冠状动脉狭窄的实验和数值研究取自临床环境,并根据血流动力学建模。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2023-11-16 DOI:10.1002/cnm.3793
Fatin Sonmez, Sendogan Karagoz, Orhan Yildirim, Ilker Firat
{"title":"冠状动脉狭窄的实验和数值研究取自临床环境,并根据血流动力学建模。","authors":"Fatin Sonmez,&nbsp;Sendogan Karagoz,&nbsp;Orhan Yildirim,&nbsp;Ilker Firat","doi":"10.1002/cnm.3793","DOIUrl":null,"url":null,"abstract":"<p>The study was carried out to investigate the effect of the artery with different pulse values and stenosis rates on the pressure drop, the peristaltic pump outlet pressure, fractional flow reserve (FFR) and most importantly the amount of power consumed by the peristaltic pump. For this purpose, images taken from the clinical environment were produced as models (10 mm inlet diameter) with 0% and 70% percent areal stenosis rates (PSR) on a three-dimensional (3D) printer. In the experimental system, pure water was used as the fluid at 54, 84, 114, 132, and 168 bpm pulse values. In addition, computational fluid dynamics (CFD) analyzes of the test region were performed using experimental boundary conditions with the help of ANSYS-Fluent software. The findings showed that as PSR increases in the arteries, the pressure drop in the stenosis region increases and this amount increases dramatically with increasing effort. An increase of approximately 40% was observed in the pump outlet pressure value from 54 bpm to 168 bpm in the PSR 0% model and 51% increase in the PSR 70% model. It has been observed that the pump does more work to overcome the increased pressure difference due to increased pulse rate and PSR. With the effect of contraction, the power consumption of the pump increased from 9.2% for 54 bpm to 13.8% for 168 bpm. In both models, the Wall Shear Stress (WSS) increased significantly. WSS increased abruptly in the stenosis and arcuate regions, while sudden decreases were observed in the flow separation region.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of the stenosed coronary artery taken from the clinical setting and modeled in terms of hemodynamics\",\"authors\":\"Fatin Sonmez,&nbsp;Sendogan Karagoz,&nbsp;Orhan Yildirim,&nbsp;Ilker Firat\",\"doi\":\"10.1002/cnm.3793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study was carried out to investigate the effect of the artery with different pulse values and stenosis rates on the pressure drop, the peristaltic pump outlet pressure, fractional flow reserve (FFR) and most importantly the amount of power consumed by the peristaltic pump. For this purpose, images taken from the clinical environment were produced as models (10 mm inlet diameter) with 0% and 70% percent areal stenosis rates (PSR) on a three-dimensional (3D) printer. In the experimental system, pure water was used as the fluid at 54, 84, 114, 132, and 168 bpm pulse values. In addition, computational fluid dynamics (CFD) analyzes of the test region were performed using experimental boundary conditions with the help of ANSYS-Fluent software. The findings showed that as PSR increases in the arteries, the pressure drop in the stenosis region increases and this amount increases dramatically with increasing effort. An increase of approximately 40% was observed in the pump outlet pressure value from 54 bpm to 168 bpm in the PSR 0% model and 51% increase in the PSR 70% model. It has been observed that the pump does more work to overcome the increased pressure difference due to increased pulse rate and PSR. With the effect of contraction, the power consumption of the pump increased from 9.2% for 54 bpm to 13.8% for 168 bpm. In both models, the Wall Shear Stress (WSS) increased significantly. WSS increased abruptly in the stenosis and arcuate regions, while sudden decreases were observed in the flow separation region.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3793\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3793","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究不同脉冲值和狭窄率的动脉对压降、蠕动泵出口压力、分流流量储备(FFR)以及蠕动泵耗电量的影响。为此,从临床环境中拍摄的图像在三维(3D)打印机上制作为0%和70%面积狭窄率(PSR)的模型(入口直径10 mm)。在实验系统中,纯水作为流体,在54,84,114,132和168 bpm的脉冲值下。此外,利用ANSYS-Fluent软件,利用实验边界条件对试验区进行计算流体力学(CFD)分析。结果表明,随着动脉内PSR的增加,狭窄区域的压降也随之增加,并且随着用力的增加,压降的幅度也显著增加。在PSR为0%的模型中,泵出口压力值从54 bpm增加到168 bpm,增加了约40%,在PSR为70%的模型中增加了51%。已经观察到,由于脉冲速率和PSR的增加,泵需要做更多的工作来克服压力差的增加。由于收缩的影响,泵的功耗从54 bpm时的9.2%增加到168 bpm时的13.8%。在两种模型中,壁面剪切应力(WSS)均显著增大。狭窄区和弓形区WSS突然增加,流动分离区WSS突然减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and numerical investigation of the stenosed coronary artery taken from the clinical setting and modeled in terms of hemodynamics

The study was carried out to investigate the effect of the artery with different pulse values and stenosis rates on the pressure drop, the peristaltic pump outlet pressure, fractional flow reserve (FFR) and most importantly the amount of power consumed by the peristaltic pump. For this purpose, images taken from the clinical environment were produced as models (10 mm inlet diameter) with 0% and 70% percent areal stenosis rates (PSR) on a three-dimensional (3D) printer. In the experimental system, pure water was used as the fluid at 54, 84, 114, 132, and 168 bpm pulse values. In addition, computational fluid dynamics (CFD) analyzes of the test region were performed using experimental boundary conditions with the help of ANSYS-Fluent software. The findings showed that as PSR increases in the arteries, the pressure drop in the stenosis region increases and this amount increases dramatically with increasing effort. An increase of approximately 40% was observed in the pump outlet pressure value from 54 bpm to 168 bpm in the PSR 0% model and 51% increase in the PSR 70% model. It has been observed that the pump does more work to overcome the increased pressure difference due to increased pulse rate and PSR. With the effect of contraction, the power consumption of the pump increased from 9.2% for 54 bpm to 13.8% for 168 bpm. In both models, the Wall Shear Stress (WSS) increased significantly. WSS increased abruptly in the stenosis and arcuate regions, while sudden decreases were observed in the flow separation region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Therapeutic Effect of Targeted Deployment Filling Coils in the Treatment of Intracranial Aneurysms. Modeling Fibrin Accumulation on Flow-Diverting Devices for Intracranial Aneurysms. A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data. A semi-automatic method for block-structured hexahedral meshing of aortic dissections. Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1