多组学分析揭示了植物乳杆菌预防lps诱导蛋鸡输卵管炎的分子调控网络。

IF 6.3 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Animal Science and Biotechnology Pub Date : 2023-11-17 DOI:10.1186/s40104-023-00937-x
Dan Song, Aike Li, Bingxu Chen, Jia Feng, Tao Duan, Junlin Cheng, Lixian Chen, Weiwei Wang, Yuna Min
{"title":"多组学分析揭示了植物乳杆菌预防lps诱导蛋鸡输卵管炎的分子调控网络。","authors":"Dan Song, Aike Li, Bingxu Chen, Jia Feng, Tao Duan, Junlin Cheng, Lixian Chen, Weiwei Wang, Yuna Min","doi":"10.1186/s40104-023-00937-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses.</p><p><strong>Results: </strong>The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by  MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased  the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05).</p><p><strong>Conclusions: </strong>In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens.\",\"authors\":\"Dan Song, Aike Li, Bingxu Chen, Jia Feng, Tao Duan, Junlin Cheng, Lixian Chen, Weiwei Wang, Yuna Min\",\"doi\":\"10.1186/s40104-023-00937-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses.</p><p><strong>Results: </strong>The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by  MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased  the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05).</p><p><strong>Conclusions: </strong>In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.</p>\",\"PeriodicalId\":64067,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-023-00937-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-023-00937-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景:输卵管炎是蛋鸡生产中的常见疾病之一,严重影响蛋鸡养殖的经济效益。植物乳杆菌可有效预防局部或全身炎症,但其预防输卵管炎的研究报道甚少。本研究旨在通过多组学分析,包括微生物组学、转录组学和代谢组学分析,探讨微囊化植物乳杆菌(MLP)对输卵管炎的预防分子调控网络。结果:结果显示,饲粮中添加MLP可显著减轻蛋鸡脂多糖(LPS)引起的子宫炎症和子宫萎缩(P)。综上所述,饲粮中添加微囊化植物乳杆菌可通过调节Candidatus_Saccharimonas、Phascolarctobacterium、Ruminococcus_torques_group和Eubacterium_hallii_group的丰度,下调血浆代谢物、对巯基硫酸盐、o-甲酚和n -乙酰组胺的水平,上调s -乳酰谷胱甘肽的水平,同时增加子宫内CPNE4、CNTN3和ACAN基因的表达,从而预防输卵管炎。并最终抑制输卵管炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens.

Background: Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses.

Results: The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by  MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased  the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05).

Conclusions: In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
822
期刊最新文献
Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia. Natural plant polyphenols contribute to the ecological and healthy swine production. Embryotrophic effect of exogenous protein contained adipose-derived stem cell extracellular vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1