膜小体载糠酸莫米松凝胶经皮给药的研制及其评价。

Bhushan R Rane, Pushkar Y Chavan, Nidhi S Kate, Ashish S Jain
{"title":"膜小体载糠酸莫米松凝胶经皮给药的研制及其评价。","authors":"Bhushan R Rane, Pushkar Y Chavan, Nidhi S Kate, Ashish S Jain","doi":"10.2174/0126673878259437231031114907","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mometasone Furoate (MF) is a corticosteroid (glucocorticoid) used to treat eczema, psoriasis, allergies, and rash on the skin; also used to reduce itching, redness, and swelling (inflammation). It has been reported that the bioavailability of MF is less than 11% when given via the nasal route. Encapsulating the drug in niosomes can improve the active pharmaceutical ingredient's bioavailability by enhancing both physical and biological stability.</p><p><strong>Objective: </strong>The goal of the study is to develop, a non-ionic surfactant-based vesicular system, by loading mometasone furoate, and introducing it into a gel-based formulation by utilizing an appropriate gelling agent, and performing its evaluation.</p><p><strong>Methods: </strong>The niosome vesicle was prepared by vacuum rotary evaporation method (Thin film hydration method). Gel was prepared using the dispersion method and in-vitro drug diffusion studies using Franz-diffusion cells.</p><p><strong>Results: </strong>According to the results of the experiments conducted for the study, Mometasone Furoate niosomal gel was prepared utilizing Mometasone Furoate niosomes that were made using the thin film hydration process, Cholesterol, and Span 60, and loaded in various amounts of Carbopol as a geling agent. The niosomes' zeta potential was found to be -24 mV, showing that the formulation is stable. The polydispersity index (PDI) was found to be 0.409 and the average size of niosomes to be 252.7 nm. The performance of the gel of the optimized formulations containing 2% Carbopol showed in vitro diffusion for 7 hours and an increased flux rate as compared to the plain MF.</p><p><strong>Conclusion: </strong>The experiments carried out during the study led to the conclusion that the thin-film hydration method was suitable for the formation of the MF-niosomes by using Span 60 and Cholesterol (2:1). The gel formulation containing 2% Carbopol indicated better in vitro diffusion following the Higuchi model across all niosomal gel formulations. Niosomal gel can be regarded as the best vesicular carrier for the efficient distribution of mometasone furoate via the transdermal route.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"300-313"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Niosomal Vesicles Loaded Mometasone Furoate Gel for Transdermal Delivery and its Evaluation.\",\"authors\":\"Bhushan R Rane, Pushkar Y Chavan, Nidhi S Kate, Ashish S Jain\",\"doi\":\"10.2174/0126673878259437231031114907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mometasone Furoate (MF) is a corticosteroid (glucocorticoid) used to treat eczema, psoriasis, allergies, and rash on the skin; also used to reduce itching, redness, and swelling (inflammation). It has been reported that the bioavailability of MF is less than 11% when given via the nasal route. Encapsulating the drug in niosomes can improve the active pharmaceutical ingredient's bioavailability by enhancing both physical and biological stability.</p><p><strong>Objective: </strong>The goal of the study is to develop, a non-ionic surfactant-based vesicular system, by loading mometasone furoate, and introducing it into a gel-based formulation by utilizing an appropriate gelling agent, and performing its evaluation.</p><p><strong>Methods: </strong>The niosome vesicle was prepared by vacuum rotary evaporation method (Thin film hydration method). Gel was prepared using the dispersion method and in-vitro drug diffusion studies using Franz-diffusion cells.</p><p><strong>Results: </strong>According to the results of the experiments conducted for the study, Mometasone Furoate niosomal gel was prepared utilizing Mometasone Furoate niosomes that were made using the thin film hydration process, Cholesterol, and Span 60, and loaded in various amounts of Carbopol as a geling agent. The niosomes' zeta potential was found to be -24 mV, showing that the formulation is stable. The polydispersity index (PDI) was found to be 0.409 and the average size of niosomes to be 252.7 nm. The performance of the gel of the optimized formulations containing 2% Carbopol showed in vitro diffusion for 7 hours and an increased flux rate as compared to the plain MF.</p><p><strong>Conclusion: </strong>The experiments carried out during the study led to the conclusion that the thin-film hydration method was suitable for the formation of the MF-niosomes by using Span 60 and Cholesterol (2:1). The gel formulation containing 2% Carbopol indicated better in vitro diffusion following the Higuchi model across all niosomal gel formulations. Niosomal gel can be regarded as the best vesicular carrier for the efficient distribution of mometasone furoate via the transdermal route.</p>\",\"PeriodicalId\":94352,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":\" \",\"pages\":\"300-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126673878259437231031114907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878259437231031114907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:糠酸莫米松(MF)是一种皮质类固醇(糖皮质激素),用于治疗湿疹、牛皮癣、过敏和皮肤皮疹;也用于减轻瘙痒、红肿(炎症)。据报道,经鼻给药时,MF的生物利用度低于11%。将药物包埋在纳米体中可以通过提高药物的物理和生物稳定性来提高活性药物成分的生物利用度。目的:本研究的目的是通过负载糠酸莫米松,并通过适当的胶凝剂将其引入凝胶基配方,并对其进行评估,从而开发一种非离子表面活性剂为基础的囊泡系统。方法:采用真空旋转蒸发法(薄膜水化法)制备膜小体囊泡。凝胶采用分散法制备,体外弗兰兹扩散细胞进行药物扩散研究。结果:根据本研究的实验结果,采用薄膜水合工艺、胆固醇、Span 60制备糠酸莫米松乳质体,并以不同量的卡波醇为胶凝剂,制备糠酸莫米松乳质体凝胶。纳米体的zeta电位为-24 mV,表明该制剂是稳定的。多分散性指数(PDI)为0.409,粒体的平均尺寸为252.7 nm。结果表明,含2%卡波波尔的优化配方凝胶的体外扩散时间为7小时,通量比普通MF增加。结论:本研究中所进行的实验表明,以Span 60和胆固醇(2:1)为原料,薄膜水化法适用于MF-niosomes的形成。根据Higuchi模型,含有2%卡波波尔的凝胶制剂在所有乳质体凝胶制剂中具有更好的体外扩散。乳质体凝胶是糠酸莫米松经皮有效分布的最佳囊泡载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Niosomal Vesicles Loaded Mometasone Furoate Gel for Transdermal Delivery and its Evaluation.

Background: Mometasone Furoate (MF) is a corticosteroid (glucocorticoid) used to treat eczema, psoriasis, allergies, and rash on the skin; also used to reduce itching, redness, and swelling (inflammation). It has been reported that the bioavailability of MF is less than 11% when given via the nasal route. Encapsulating the drug in niosomes can improve the active pharmaceutical ingredient's bioavailability by enhancing both physical and biological stability.

Objective: The goal of the study is to develop, a non-ionic surfactant-based vesicular system, by loading mometasone furoate, and introducing it into a gel-based formulation by utilizing an appropriate gelling agent, and performing its evaluation.

Methods: The niosome vesicle was prepared by vacuum rotary evaporation method (Thin film hydration method). Gel was prepared using the dispersion method and in-vitro drug diffusion studies using Franz-diffusion cells.

Results: According to the results of the experiments conducted for the study, Mometasone Furoate niosomal gel was prepared utilizing Mometasone Furoate niosomes that were made using the thin film hydration process, Cholesterol, and Span 60, and loaded in various amounts of Carbopol as a geling agent. The niosomes' zeta potential was found to be -24 mV, showing that the formulation is stable. The polydispersity index (PDI) was found to be 0.409 and the average size of niosomes to be 252.7 nm. The performance of the gel of the optimized formulations containing 2% Carbopol showed in vitro diffusion for 7 hours and an increased flux rate as compared to the plain MF.

Conclusion: The experiments carried out during the study led to the conclusion that the thin-film hydration method was suitable for the formation of the MF-niosomes by using Span 60 and Cholesterol (2:1). The gel formulation containing 2% Carbopol indicated better in vitro diffusion following the Higuchi model across all niosomal gel formulations. Niosomal gel can be regarded as the best vesicular carrier for the efficient distribution of mometasone furoate via the transdermal route.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Oral Bioavailability and Stability Studies of Loratadine Tablets Based on Solid Dispersion of Modified Ziziphus spina-christi Gum Crisaborole-Enthused Glycerosomal Gel for an Augmented Skin Permeation. In Vitro Development of Enteric-Coated Tablets of the Probiotic Lactobacillus fermentum LF-G89: A Possible Approach to Intestinal Colonization. Formulation Consideration of Medicated Chewing Gum: A Review. Ion-activated In Situ Gel of Gellan Gum Containing Chrysin for Nasal Administration in Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1