白垩纪针叶树的进化史、生物地理学和灭绝

Josep Marmi , Aixa Tosal , Carles Martín-Closas
{"title":"白垩纪针叶树的进化史、生物地理学和灭绝","authors":"Josep Marmi ,&nbsp;Aixa Tosal ,&nbsp;Carles Martín-Closas","doi":"10.1016/j.eve.2023.100017","DOIUrl":null,"url":null,"abstract":"<div><p><em>Frenelopsis</em> Schenk (family Cheirolepidiaceae†) was among the most widespread conifer genera and a dominant element of wetland ecosystems in low to mid-palaeolatitudes in the the Northern Hemisphere. It was also one of the more important peat-forming shrubs and trees generating extensive deposits of Cretaceous lignite. The genus became extinct at the end of the Cretaceous. Studies of the presence/absence and diversity of <em>Frenelopsis</em> allow us to analyse its evolutionary history, biogeography, and the consider the possible causes of its extinction. During the Early Cretaceous, the genus diversified, triggered by the rise of short-lived species and the constraint of endemism. The maximum diversity and species richness were attained in Barremian and Aptian times while the maximum number of global occurrences is documented during the Albian. In the Late Cretaceous, <em>Frenelopsis</em> species richness declined and the genus became progressively more restricted to the Tethyan archipelago in the context of the rise to dominance of angiosperms. In the Maastrichtian, the last representatives of <em>Frenelopsis</em> survived in the coastal wetlands of Iberia as a relictual plant. In northeast Iberia (present-day Pyrenees) the last occurrences from this genus are early to middle Maastrichtian in age and show an intriguing contrast between the abundance of vegetative remains and the lack of <em>Classopollis</em> pollen grains. These data suggest that at the end of its lineage, the plant was reproducing only vegetatively and that male sterility may have contributed to extinction.</p></div>","PeriodicalId":100516,"journal":{"name":"Evolving Earth","volume":"1 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950117223000171/pdfft?md5=9d7b608b2f34dac9129d5df883924ee7&pid=1-s2.0-S2950117223000171-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evolutionary history, biogeography, and extinction of the Cretaceous cheirolepidiaceous conifer, Frenelopsis\",\"authors\":\"Josep Marmi ,&nbsp;Aixa Tosal ,&nbsp;Carles Martín-Closas\",\"doi\":\"10.1016/j.eve.2023.100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Frenelopsis</em> Schenk (family Cheirolepidiaceae†) was among the most widespread conifer genera and a dominant element of wetland ecosystems in low to mid-palaeolatitudes in the the Northern Hemisphere. It was also one of the more important peat-forming shrubs and trees generating extensive deposits of Cretaceous lignite. The genus became extinct at the end of the Cretaceous. Studies of the presence/absence and diversity of <em>Frenelopsis</em> allow us to analyse its evolutionary history, biogeography, and the consider the possible causes of its extinction. During the Early Cretaceous, the genus diversified, triggered by the rise of short-lived species and the constraint of endemism. The maximum diversity and species richness were attained in Barremian and Aptian times while the maximum number of global occurrences is documented during the Albian. In the Late Cretaceous, <em>Frenelopsis</em> species richness declined and the genus became progressively more restricted to the Tethyan archipelago in the context of the rise to dominance of angiosperms. In the Maastrichtian, the last representatives of <em>Frenelopsis</em> survived in the coastal wetlands of Iberia as a relictual plant. In northeast Iberia (present-day Pyrenees) the last occurrences from this genus are early to middle Maastrichtian in age and show an intriguing contrast between the abundance of vegetative remains and the lack of <em>Classopollis</em> pollen grains. These data suggest that at the end of its lineage, the plant was reproducing only vegetatively and that male sterility may have contributed to extinction.</p></div>\",\"PeriodicalId\":100516,\"journal\":{\"name\":\"Evolving Earth\",\"volume\":\"1 \",\"pages\":\"Article 100017\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950117223000171/pdfft?md5=9d7b608b2f34dac9129d5df883924ee7&pid=1-s2.0-S2950117223000171-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolving Earth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950117223000171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Earth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950117223000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雪蕨科(Frenelopsis Schenk)是北半球中低纬度地区分布最广的针叶树属之一,也是湿地生态系统的重要组成部分。它也是形成大量白垩纪褐煤的重要的泥炭形成灌木和乔木之一。这个属在白垩纪末期灭绝了。对Frenelopsis的存在/缺失和多样性的研究使我们能够分析其进化史,生物地理学,并考虑其灭绝的可能原因。在早白垩纪,由于短命物种的兴起和地方性的限制,该属开始多样化。物种多样性和丰富度最高的时期是巴雷米亚和阿普提亚时期,而全球出现数量最多的时期是阿尔比亚时期。在白垩纪晚期,在被子植物的优势地位上升的背景下,Frenelopsis物种丰富度下降,该属逐渐局限于特提斯群岛。在马斯特里赫特,最后的Frenelopsis代表作为一种宗教植物存活在伊比利亚的沿海湿地。在伊比利亚东北部(今天的比利牛斯山脉),这个属的最后一次出现是在马斯特里希的早期到中期,在丰富的营养遗迹和缺乏Classopollis花粉粒之间显示了一个有趣的对比。这些数据表明,在其谱系的最后,这种植物只能通过营养繁殖,而雄性不育可能是导致其灭绝的原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary history, biogeography, and extinction of the Cretaceous cheirolepidiaceous conifer, Frenelopsis

Frenelopsis Schenk (family Cheirolepidiaceae†) was among the most widespread conifer genera and a dominant element of wetland ecosystems in low to mid-palaeolatitudes in the the Northern Hemisphere. It was also one of the more important peat-forming shrubs and trees generating extensive deposits of Cretaceous lignite. The genus became extinct at the end of the Cretaceous. Studies of the presence/absence and diversity of Frenelopsis allow us to analyse its evolutionary history, biogeography, and the consider the possible causes of its extinction. During the Early Cretaceous, the genus diversified, triggered by the rise of short-lived species and the constraint of endemism. The maximum diversity and species richness were attained in Barremian and Aptian times while the maximum number of global occurrences is documented during the Albian. In the Late Cretaceous, Frenelopsis species richness declined and the genus became progressively more restricted to the Tethyan archipelago in the context of the rise to dominance of angiosperms. In the Maastrichtian, the last representatives of Frenelopsis survived in the coastal wetlands of Iberia as a relictual plant. In northeast Iberia (present-day Pyrenees) the last occurrences from this genus are early to middle Maastrichtian in age and show an intriguing contrast between the abundance of vegetative remains and the lack of Classopollis pollen grains. These data suggest that at the end of its lineage, the plant was reproducing only vegetatively and that male sterility may have contributed to extinction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential of pine forest in controlling soil erosion in Himalayan region - Investigation using fallout radionuclide (137Cs) measurements Bonebed amber deposits: A review of taphonomy and palaeontological significance Reconstruction of avulsion history of the Brahmaputra River: Rare example of a giant braided river course alteration through multi-channel multi-avulsion processes Crystallographic study of vertebrate fossils from the Central Narmada valley, India Phase equilibria constraints on the stability of garnet in mafic granulite: An example from Karimnagar granulite terrain, Eastern Dharwar Craton, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1