{"title":"具有序列相关误差的变系数模型的有效估计","authors":"Xiaojuan Kang , Tizheng Li","doi":"10.1016/j.stamet.2016.05.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>The varying coefficient model provides a useful tool for statistical modeling<span>. In this paper, we propose a new procedure for more efficient estimation of its coefficient functions when its errors are serially correlated and modeled as an autoregressive (AR) process. We establish the </span></span>asymptotic distribution of the proposed estimator and show that it is more efficient than the conventional local linear estimator. Furthermore, we suggest a penalized profile least squares method with the smoothly clipped absolute deviation (SCAD) penalty function to select the order of the AR error process. Simulation evidence shows that significant gains can be achieved in finite samples with the proposed estimation procedure. Moreover, a real data example is given to illustrate the usefulness of the proposed estimation procedure.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"32 ","pages":"Pages 161-184"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.05.005","citationCount":"0","resultStr":"{\"title\":\"Efficient estimation of varying coefficient models with serially correlated errors\",\"authors\":\"Xiaojuan Kang , Tizheng Li\",\"doi\":\"10.1016/j.stamet.2016.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The varying coefficient model provides a useful tool for statistical modeling<span>. In this paper, we propose a new procedure for more efficient estimation of its coefficient functions when its errors are serially correlated and modeled as an autoregressive (AR) process. We establish the </span></span>asymptotic distribution of the proposed estimator and show that it is more efficient than the conventional local linear estimator. Furthermore, we suggest a penalized profile least squares method with the smoothly clipped absolute deviation (SCAD) penalty function to select the order of the AR error process. Simulation evidence shows that significant gains can be achieved in finite samples with the proposed estimation procedure. Moreover, a real data example is given to illustrate the usefulness of the proposed estimation procedure.</p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"32 \",\"pages\":\"Pages 161-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2016.05.005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312716300090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
Efficient estimation of varying coefficient models with serially correlated errors
The varying coefficient model provides a useful tool for statistical modeling. In this paper, we propose a new procedure for more efficient estimation of its coefficient functions when its errors are serially correlated and modeled as an autoregressive (AR) process. We establish the asymptotic distribution of the proposed estimator and show that it is more efficient than the conventional local linear estimator. Furthermore, we suggest a penalized profile least squares method with the smoothly clipped absolute deviation (SCAD) penalty function to select the order of the AR error process. Simulation evidence shows that significant gains can be achieved in finite samples with the proposed estimation procedure. Moreover, a real data example is given to illustrate the usefulness of the proposed estimation procedure.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.