基于对称和主机偏差的低延迟间接网络图优化算法

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2022-12-01 DOI:10.1016/j.parco.2022.102983
Masahiro Nakao , Masaki Tsukamoto , Yoshiko Hanada , Keiji Yamamoto
{"title":"基于对称和主机偏差的低延迟间接网络图优化算法","authors":"Masahiro Nakao ,&nbsp;Masaki Tsukamoto ,&nbsp;Yoshiko Hanada ,&nbsp;Keiji Yamamoto","doi":"10.1016/j.parco.2022.102983","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that an indirect network with a small host-to-host Average Shortest Path Length (h-ASPL) improves overall system performance in a parallel computer system. As a means to discuss such indirect networks in graph theory, the Order/Radix Problem (ORP) has been proposed. ORP involves finding a graph with a minimum h-ASPL that satisfies a given number of hosts and radix. A graph in ORP represents an indirect network and has two types of vertices: host and switch. We propose an optimization algorithm to generate graphs with a sufficiently small h-ASPL. The primary features of the proposed algorithm are the symmetry of the graph and the bias of the hosts adjacent to each switch. These features reduce the computational time to calculate the h-ASPL and improve the search performance of the algorithm. The performance of the proposed algorithm is evaluated using problems presented by Graph Golf, an international ORP competition. Our results show that the proposed algorithm can generate graphs with a smaller h-ASPL than the existing algorithm. To evaluate the performance of the graphs generated by the proposed algorithm, we use the parallel simulation framework SimGrid and the parallel benchmark collection NAS Parallel Benchmarks. Our results also show that the graphs generated by the proposed algorithm have higher performance than those generated by the existing algorithm.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"114 ","pages":"Article 102983"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167819122000722/pdfft?md5=70b6cbe2b73c6952541b7170b6406471&pid=1-s2.0-S0167819122000722-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graph optimization algorithm using symmetry and host bias for low-latency indirect network\",\"authors\":\"Masahiro Nakao ,&nbsp;Masaki Tsukamoto ,&nbsp;Yoshiko Hanada ,&nbsp;Keiji Yamamoto\",\"doi\":\"10.1016/j.parco.2022.102983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that an indirect network with a small host-to-host Average Shortest Path Length (h-ASPL) improves overall system performance in a parallel computer system. As a means to discuss such indirect networks in graph theory, the Order/Radix Problem (ORP) has been proposed. ORP involves finding a graph with a minimum h-ASPL that satisfies a given number of hosts and radix. A graph in ORP represents an indirect network and has two types of vertices: host and switch. We propose an optimization algorithm to generate graphs with a sufficiently small h-ASPL. The primary features of the proposed algorithm are the symmetry of the graph and the bias of the hosts adjacent to each switch. These features reduce the computational time to calculate the h-ASPL and improve the search performance of the algorithm. The performance of the proposed algorithm is evaluated using problems presented by Graph Golf, an international ORP competition. Our results show that the proposed algorithm can generate graphs with a smaller h-ASPL than the existing algorithm. To evaluate the performance of the graphs generated by the proposed algorithm, we use the parallel simulation framework SimGrid and the parallel benchmark collection NAS Parallel Benchmarks. Our results also show that the graphs generated by the proposed algorithm have higher performance than those generated by the existing algorithm.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"114 \",\"pages\":\"Article 102983\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000722/pdfft?md5=70b6cbe2b73c6952541b7170b6406471&pid=1-s2.0-S0167819122000722-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000722\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000722","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在并行计算机系统中,具有较小的主机到主机平均最短路径长度(h-ASPL)的间接网络可以提高系统的整体性能。作为图论中讨论这种间接网络的一种方法,序/基问题(ORP)被提出。ORP涉及寻找具有最小h-ASPL的图,该图满足给定数量的主机和基数。ORP中的图表示一个间接网络,有两种类型的顶点:主机和交换机。我们提出了一种优化算法来生成具有足够小的h-ASPL的图。该算法的主要特征是图的对称性和每个开关相邻主机的偏置。这些特征减少了h-ASPL的计算时间,提高了算法的搜索性能。利用国际ORP比赛Graph Golf提出的问题对该算法的性能进行了评估。实验结果表明,与现有算法相比,该算法能以更小的h-ASPL生成图。为了评估该算法生成的图形的性能,我们使用了并行仿真框架SimGrid和并行基准集合NAS parallel benchmark。实验结果还表明,该算法生成的图形比现有算法生成的图形具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph optimization algorithm using symmetry and host bias for low-latency indirect network

It is known that an indirect network with a small host-to-host Average Shortest Path Length (h-ASPL) improves overall system performance in a parallel computer system. As a means to discuss such indirect networks in graph theory, the Order/Radix Problem (ORP) has been proposed. ORP involves finding a graph with a minimum h-ASPL that satisfies a given number of hosts and radix. A graph in ORP represents an indirect network and has two types of vertices: host and switch. We propose an optimization algorithm to generate graphs with a sufficiently small h-ASPL. The primary features of the proposed algorithm are the symmetry of the graph and the bias of the hosts adjacent to each switch. These features reduce the computational time to calculate the h-ASPL and improve the search performance of the algorithm. The performance of the proposed algorithm is evaluated using problems presented by Graph Golf, an international ORP competition. Our results show that the proposed algorithm can generate graphs with a smaller h-ASPL than the existing algorithm. To evaluate the performance of the graphs generated by the proposed algorithm, we use the parallel simulation framework SimGrid and the parallel benchmark collection NAS Parallel Benchmarks. Our results also show that the graphs generated by the proposed algorithm have higher performance than those generated by the existing algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1