压力驱动膜过程中痕量离子浓度-极化的新紧凑表达式

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2021-12-05 DOI:10.1016/j.memlet.2021.100003
Yaeli S. Oren , Viatcheslav Freger , Oded Nir
{"title":"压力驱动膜过程中痕量离子浓度-极化的新紧凑表达式","authors":"Yaeli S. Oren ,&nbsp;Viatcheslav Freger ,&nbsp;Oded Nir","doi":"10.1016/j.memlet.2021.100003","DOIUrl":null,"url":null,"abstract":"<div><p>Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions' CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100003"},"PeriodicalIF":4.9000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000039/pdfft?md5=8742756c0c4113b199e5b3c2844e8c71&pid=1-s2.0-S2772421221000039-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New compact expressions for concentration-polarization of trace-ions in pressure-driven membrane processes\",\"authors\":\"Yaeli S. Oren ,&nbsp;Viatcheslav Freger ,&nbsp;Oded Nir\",\"doi\":\"10.1016/j.memlet.2021.100003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions' CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"1 1\",\"pages\":\"Article 100003\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421221000039/pdfft?md5=8742756c0c4113b199e5b3c2844e8c71&pid=1-s2.0-S2772421221000039-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421221000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421221000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑浓度极化(CP)是模拟膜分离过程中溶质输运的关键。在混合电解质溶液中,离子的CP不仅受到扩散和平流的影响,还受到电迁移的影响。然而,缺乏电迁移项的经典薄膜模型经常用于离子CP的建模。通常,为了减少计算负荷,离子CP被完全忽略。在这里,我们研究了微量离子在显性盐溶液中的CP,这是一个与许多反渗透和纳滤过程相关的案例。首先,我们重新审视了溶液-扩散-电迁移-膜理论,以获得显性盐溶液中微量离子的CP和膜输运的解析解。其次,我们考虑了与反渗透和纳滤相关的限制条件,从中我们推导出两个紧凑的方程,作为经典薄膜理论的无缝扩展。这些方程可以用最小的努力来解释电迁移对CP的影响。第三,我们用我们的理论量化了不同优势盐溶液中电迁移对离子CP的影响。最后,通过分析两个环境膜过程,我们证明了我们的理论是如何偏离传统的,并量化了对膜结垢势和离子污染物运输的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New compact expressions for concentration-polarization of trace-ions in pressure-driven membrane processes

Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions' CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device Enhanced phosphate anion flux through single-ion, reverse-selective mixed-matrix cation exchange membrane Thermodynamic efficiency of membrane separation of dilute gas: Estimation for CO2 direct air capture application The solution-diffusion model: “Rumors of my death have been exaggerated” Incorporation of polyzwitterions in superabsorbent network membranes for enhanced saltwater absorption and retention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1