{"title":"马骨骼肌卫星细胞电穿孔转染条件优化。","authors":"Tseweendolmaa Ulaangerel, Minna Yi, Undarmaa Budsuren, Yingchao Shen, Hong Ren, Bold Demuul, Dongyi Bai, Dulguun Dorjgotov, Gantulga Davaakhuu, Tuyatsetseg Jambal, Manglai Dugarjav, Gerelchimeg Bou","doi":"10.1080/10495398.2023.2280664","DOIUrl":null,"url":null,"abstract":"<p><p>Satellite cells are an important cellular model for studying muscle growth and development and mammalian locomotion-related molecular mechanisms. In this study, we investigated the effects of voltage, pulse duration, and DNA dosage on horse skeletal muscle satellite cells' electroporation transfection efficiency using the eukaryotic expression plasmid Td Tomato-C1 (5.5 kb) encoding the red fluorescent protein gene mainly based on fluorescence-positive cell rate and cell survival rate. By comparison of different voltages, pulse durations, and DNA doses, horse skeletal muscle satellite cells have nearly 80% transfection efficiency under the condition of voltage 120 V, DNA dosage 7 µg/ml, and pulse duration 30 ms. This optimized electroporation condition would facilitate the application of horse skeletal muscle satellite cells in genetic studies of muscle function and related diseases.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"2280664"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condition optimization for electroporation transfection in horse skeletal muscle satellite cells.\",\"authors\":\"Tseweendolmaa Ulaangerel, Minna Yi, Undarmaa Budsuren, Yingchao Shen, Hong Ren, Bold Demuul, Dongyi Bai, Dulguun Dorjgotov, Gantulga Davaakhuu, Tuyatsetseg Jambal, Manglai Dugarjav, Gerelchimeg Bou\",\"doi\":\"10.1080/10495398.2023.2280664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Satellite cells are an important cellular model for studying muscle growth and development and mammalian locomotion-related molecular mechanisms. In this study, we investigated the effects of voltage, pulse duration, and DNA dosage on horse skeletal muscle satellite cells' electroporation transfection efficiency using the eukaryotic expression plasmid Td Tomato-C1 (5.5 kb) encoding the red fluorescent protein gene mainly based on fluorescence-positive cell rate and cell survival rate. By comparison of different voltages, pulse durations, and DNA doses, horse skeletal muscle satellite cells have nearly 80% transfection efficiency under the condition of voltage 120 V, DNA dosage 7 µg/ml, and pulse duration 30 ms. This optimized electroporation condition would facilitate the application of horse skeletal muscle satellite cells in genetic studies of muscle function and related diseases.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\" \",\"pages\":\"2280664\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2023.2280664\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2280664","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Condition optimization for electroporation transfection in horse skeletal muscle satellite cells.
Satellite cells are an important cellular model for studying muscle growth and development and mammalian locomotion-related molecular mechanisms. In this study, we investigated the effects of voltage, pulse duration, and DNA dosage on horse skeletal muscle satellite cells' electroporation transfection efficiency using the eukaryotic expression plasmid Td Tomato-C1 (5.5 kb) encoding the red fluorescent protein gene mainly based on fluorescence-positive cell rate and cell survival rate. By comparison of different voltages, pulse durations, and DNA doses, horse skeletal muscle satellite cells have nearly 80% transfection efficiency under the condition of voltage 120 V, DNA dosage 7 µg/ml, and pulse duration 30 ms. This optimized electroporation condition would facilitate the application of horse skeletal muscle satellite cells in genetic studies of muscle function and related diseases.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes