猪肠道菌群的组成和进化特征。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Microbiology Pub Date : 2024-08-01 Epub Date: 2023-11-20 DOI:10.1007/s10123-023-00449-8
Shuhong Zhang, Huan Zhang, Cheng Zhang, Guan Wang, Chuanxing Shi, Zhiqiang Li, Fengyi Gao, Yanyan Cui, Ming Li, Guangli Yang
{"title":"猪肠道菌群的组成和进化特征。","authors":"Shuhong Zhang, Huan Zhang, Cheng Zhang, Guan Wang, Chuanxing Shi, Zhiqiang Li, Fengyi Gao, Yanyan Cui, Ming Li, Guangli Yang","doi":"10.1007/s10123-023-00449-8","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"993-1008"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Composition and evolutionary characterization of the gut microbiota in pigs.\",\"authors\":\"Shuhong Zhang, Huan Zhang, Cheng Zhang, Guan Wang, Chuanxing Shi, Zhiqiang Li, Fengyi Gao, Yanyan Cui, Ming Li, Guangli Yang\",\"doi\":\"10.1007/s10123-023-00449-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"993-1008\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-023-00449-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00449-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肠道菌群在宿主生物的生理和功能中起着重要作用。然而,从野生祖先到现代驯化物种,微生物-宿主关系的组成和进化知识有限。本研究利用高通量测序技术,对不同猪品种肠道内容物中的16S rRNA基因V3-V4进行了分析和比较。结果发现18 323个扩增子序列变异,其中厚壁菌门和放线菌门、双歧杆菌门和异源菌门在野猪中最为常见。山西黑猪(CSB)以变形菌门和厚壁菌门为主,大白猪(LW)和伊比利亚猪(IB)以厚壁菌门为主,IB以拟杆菌门次之,LW以变形菌门次之。在属水平上,CSB和LW以志贺氏菌和乳酸菌为主,IB以放线菌和肌酸菌为主。基因表达差异、系统发育和功能分析表明,不同猪品种间微生物类群的相对丰度存在显著差异。尽管许多微生物类群在野猪和家猪中都是共同的,但在可能影响宿主表型性状的细菌基因中观察到显著的多样化。总之,这些发现表明,微生物群的组成和功能与宿主的驯化和进化变化密切相关。微生物群落的成员在猪中垂直传播,有证据表明宿主及其肠道微生物群落共同进化。这些结果增强了我们对肠道微生物与宿主之间复杂相互作用的理解和欣赏,并强调了将这些知识应用于农业和微生物研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composition and evolutionary characterization of the gut microbiota in pigs.

The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
期刊最新文献
Diesel-degradation by indigenous bacteria of petroleum-contaminated soils. Rapid on-site detection of viable Vibrio parahaemolyticus in seafood using cis-diamminedichloroplatinum and colorimetric loop-mediated isothermal amplification (CDDP-LAMP). Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Effect of calf separation on gut microbiome and fecal metabolome of mother in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1