Wu Quanyu, Ding Sheng, Tao Weige, Pan Lingjiao, Liu Xiaojie
{"title":"基于多模型融合策略耦合的脑电信号分类算法研究。","authors":"Wu Quanyu, Ding Sheng, Tao Weige, Pan Lingjiao, Liu Xiaojie","doi":"10.1080/10255842.2023.2284091","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the accuracy of motor imagery(MI)EEG signal recognition, two methods, namely power spectral density and wavelet packet decomposition combined with a common spatial pattern, were employed to explore the feature information in depth in MI EEG signals. The extracted MI EEG signal features were subjected to series feature fusion, and the F-test method was used to select features with higher information content. Here regarding the accuracy of MI EEG signal classification, we further proposed the Platt Scaling probability calibration method was used to calibrate the results obtained from six basic classifiers, namely random forest (RF), support vector machines (SVM), Logistic Regression (LR), Gaussian naïve bayes (GNB), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). From these 12 classifiers, three to four with higher accuracy were selected for model fusion. The proposed method was validated on Datasets 2a of the 4th International BCI Competition, achieving an average accuracy of MI EEG data of nine subjects reached 91.46%, which indicates that model fusion was an effective method to improve classification accuracy, and provides some reference value for the research on MI brain-machine interface.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"51-60"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on MI EEG signal classification algorithm using multi-model fusion strategy coupling.\",\"authors\":\"Wu Quanyu, Ding Sheng, Tao Weige, Pan Lingjiao, Liu Xiaojie\",\"doi\":\"10.1080/10255842.2023.2284091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To enhance the accuracy of motor imagery(MI)EEG signal recognition, two methods, namely power spectral density and wavelet packet decomposition combined with a common spatial pattern, were employed to explore the feature information in depth in MI EEG signals. The extracted MI EEG signal features were subjected to series feature fusion, and the F-test method was used to select features with higher information content. Here regarding the accuracy of MI EEG signal classification, we further proposed the Platt Scaling probability calibration method was used to calibrate the results obtained from six basic classifiers, namely random forest (RF), support vector machines (SVM), Logistic Regression (LR), Gaussian naïve bayes (GNB), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). From these 12 classifiers, three to four with higher accuracy were selected for model fusion. The proposed method was validated on Datasets 2a of the 4th International BCI Competition, achieving an average accuracy of MI EEG data of nine subjects reached 91.46%, which indicates that model fusion was an effective method to improve classification accuracy, and provides some reference value for the research on MI brain-machine interface.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"51-60\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2284091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2284091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Research on MI EEG signal classification algorithm using multi-model fusion strategy coupling.
To enhance the accuracy of motor imagery(MI)EEG signal recognition, two methods, namely power spectral density and wavelet packet decomposition combined with a common spatial pattern, were employed to explore the feature information in depth in MI EEG signals. The extracted MI EEG signal features were subjected to series feature fusion, and the F-test method was used to select features with higher information content. Here regarding the accuracy of MI EEG signal classification, we further proposed the Platt Scaling probability calibration method was used to calibrate the results obtained from six basic classifiers, namely random forest (RF), support vector machines (SVM), Logistic Regression (LR), Gaussian naïve bayes (GNB), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). From these 12 classifiers, three to four with higher accuracy were selected for model fusion. The proposed method was validated on Datasets 2a of the 4th International BCI Competition, achieving an average accuracy of MI EEG data of nine subjects reached 91.46%, which indicates that model fusion was an effective method to improve classification accuracy, and provides some reference value for the research on MI brain-machine interface.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.