Chindy Nur Rosmeita, Sri Budiarti, Apon Zaenal Mustopa, Ela Novianti, Sri Swasthikawati, Sheila Chairunnisa, Ai Hertati, Maritsa Nurfatwa, Nurlaili Ekawati, Nurhasni Hasan
{"title":"毕赤酵母GS115中衣壳蛋白L1 HPV 52自组装病毒样颗粒的表达、纯化和表征","authors":"Chindy Nur Rosmeita, Sri Budiarti, Apon Zaenal Mustopa, Ela Novianti, Sri Swasthikawati, Sheila Chairunnisa, Ai Hertati, Maritsa Nurfatwa, Nurlaili Ekawati, Nurhasni Hasan","doi":"10.1186/s43141-023-00571-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein.</p><p><strong>Result: </strong>The recombinant HPV 52 L1 was expressed in Pichia pastoris on a shake-flask scale with 0.5% methanol induction in this study. The copy number was used to compare the expression level and stability. The colony that survived on a solid medium containing 2000 μg/ml of Zeocin was selected and cultured to express HPV 52 L1. DNA was extracted from the chosen colony, and the copy was determined using qPCR. HPV 52 L1 protein was then purified through fast performance liquid chromatography. Transmission electron microscopy (TEM) evaluation confirmed the VLP self-assembly. The genomic DNA remained intact after 100 generations of serial cultivation under no selective pressure medium conditions, and the protein produced was relatively stable. However, the band intensity was slightly lower than in the parental colony. In terms of copy number, a low copy transformant resulted in low expression but produced a highly stable recombinant clone. Eventually, the L1 protein expressed in Pichia pastoris can self-assemble into VLP. Therefore, recombinant HPV possesses a stable clone and the ability to self-assemble into VLP.</p><p><strong>Conclusion: </strong>The recombinant L1 HPV 52 protein is successfully expressed in P. pastoris within a size range of approximately 55 kDa and demonstrated favorable stability. The L1 protein expressed in Pichia pastoris successful self-assembled of HPV VLPs, thereby establishing their potential efficacy as a prophylactic vaccine.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression, purification, and characterization of self-assembly virus-like particles of capsid protein L1 HPV 52 in Pichia pastoris GS115.\",\"authors\":\"Chindy Nur Rosmeita, Sri Budiarti, Apon Zaenal Mustopa, Ela Novianti, Sri Swasthikawati, Sheila Chairunnisa, Ai Hertati, Maritsa Nurfatwa, Nurlaili Ekawati, Nurhasni Hasan\",\"doi\":\"10.1186/s43141-023-00571-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein.</p><p><strong>Result: </strong>The recombinant HPV 52 L1 was expressed in Pichia pastoris on a shake-flask scale with 0.5% methanol induction in this study. The copy number was used to compare the expression level and stability. The colony that survived on a solid medium containing 2000 μg/ml of Zeocin was selected and cultured to express HPV 52 L1. DNA was extracted from the chosen colony, and the copy was determined using qPCR. HPV 52 L1 protein was then purified through fast performance liquid chromatography. Transmission electron microscopy (TEM) evaluation confirmed the VLP self-assembly. The genomic DNA remained intact after 100 generations of serial cultivation under no selective pressure medium conditions, and the protein produced was relatively stable. However, the band intensity was slightly lower than in the parental colony. In terms of copy number, a low copy transformant resulted in low expression but produced a highly stable recombinant clone. Eventually, the L1 protein expressed in Pichia pastoris can self-assemble into VLP. Therefore, recombinant HPV possesses a stable clone and the ability to self-assemble into VLP.</p><p><strong>Conclusion: </strong>The recombinant L1 HPV 52 protein is successfully expressed in P. pastoris within a size range of approximately 55 kDa and demonstrated favorable stability. The L1 protein expressed in Pichia pastoris successful self-assembled of HPV VLPs, thereby establishing their potential efficacy as a prophylactic vaccine.</p>\",\"PeriodicalId\":74026,\"journal\":{\"name\":\"Journal, genetic engineering & biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal, genetic engineering & biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43141-023-00571-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00571-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Expression, purification, and characterization of self-assembly virus-like particles of capsid protein L1 HPV 52 in Pichia pastoris GS115.
Background: Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein.
Result: The recombinant HPV 52 L1 was expressed in Pichia pastoris on a shake-flask scale with 0.5% methanol induction in this study. The copy number was used to compare the expression level and stability. The colony that survived on a solid medium containing 2000 μg/ml of Zeocin was selected and cultured to express HPV 52 L1. DNA was extracted from the chosen colony, and the copy was determined using qPCR. HPV 52 L1 protein was then purified through fast performance liquid chromatography. Transmission electron microscopy (TEM) evaluation confirmed the VLP self-assembly. The genomic DNA remained intact after 100 generations of serial cultivation under no selective pressure medium conditions, and the protein produced was relatively stable. However, the band intensity was slightly lower than in the parental colony. In terms of copy number, a low copy transformant resulted in low expression but produced a highly stable recombinant clone. Eventually, the L1 protein expressed in Pichia pastoris can self-assemble into VLP. Therefore, recombinant HPV possesses a stable clone and the ability to self-assemble into VLP.
Conclusion: The recombinant L1 HPV 52 protein is successfully expressed in P. pastoris within a size range of approximately 55 kDa and demonstrated favorable stability. The L1 protein expressed in Pichia pastoris successful self-assembled of HPV VLPs, thereby establishing their potential efficacy as a prophylactic vaccine.