小分子抑制剂与RNA聚合酶- spt5复合物的结合影响RNA和DNA的稳定性。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-11-21 DOI:10.1007/s10822-023-00543-z
Adan Gallardo, Bercem Dutagaci
{"title":"小分子抑制剂与RNA聚合酶- spt5复合物的结合影响RNA和DNA的稳定性。","authors":"Adan Gallardo,&nbsp;Bercem Dutagaci","doi":"10.1007/s10822-023-00543-z","DOIUrl":null,"url":null,"abstract":"<div><p>Spt5 is an elongation factor that associates with RNA polymerase II (Pol II) during transcription and has important functions in promoter-proximal pausing and elongation processivity. Spt5 was also recognized for its roles in the transcription of expanded-repeat genes that are related to neurodegenerative diseases. Recently, a set of Spt5-Pol II small molecule inhibitors (SPIs) were reported, which selectively inhibit mutant huntingtin gene transcription. Inhibition mechanisms as well as interaction sites of these SPIs with Pol II and Spt5 are not entirely known. In this study, we predicted the binding sites of three selected SPIs at the Pol II-Spt5 interface by docking and molecular dynamics simulations. Two molecules out of three demonstrated strong binding with Spt5 and Pol II, while the other molecule was more loosely bound and sampled multiple binding sites. Strongly bound SPIs indirectly affected RNA and DNA dynamics at the exit site as DNA became more flexible while RNA was stabilized by increased interactions with Spt5. Our results suggest that the transcription inhibition mechanism induced by SPIs can be related to Spt5-nucleic acid interactions, which were altered to some extent with strong binding of SPIs.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663202/pdf/","citationCount":"0","resultStr":"{\"title\":\"Binding of small molecule inhibitors to RNA polymerase-Spt5 complex impacts RNA and DNA stability\",\"authors\":\"Adan Gallardo,&nbsp;Bercem Dutagaci\",\"doi\":\"10.1007/s10822-023-00543-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spt5 is an elongation factor that associates with RNA polymerase II (Pol II) during transcription and has important functions in promoter-proximal pausing and elongation processivity. Spt5 was also recognized for its roles in the transcription of expanded-repeat genes that are related to neurodegenerative diseases. Recently, a set of Spt5-Pol II small molecule inhibitors (SPIs) were reported, which selectively inhibit mutant huntingtin gene transcription. Inhibition mechanisms as well as interaction sites of these SPIs with Pol II and Spt5 are not entirely known. In this study, we predicted the binding sites of three selected SPIs at the Pol II-Spt5 interface by docking and molecular dynamics simulations. Two molecules out of three demonstrated strong binding with Spt5 and Pol II, while the other molecule was more loosely bound and sampled multiple binding sites. Strongly bound SPIs indirectly affected RNA and DNA dynamics at the exit site as DNA became more flexible while RNA was stabilized by increased interactions with Spt5. Our results suggest that the transcription inhibition mechanism induced by SPIs can be related to Spt5-nucleic acid interactions, which were altered to some extent with strong binding of SPIs.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663202/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-023-00543-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00543-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

Spt5是一种延伸因子,在转录过程中与RNA聚合酶II (Pol II)结合,在启动子-近端暂停和延伸过程中具有重要作用。Spt5也被认为在与神经退行性疾病相关的扩展重复基因的转录中发挥作用。最近,一组Spt5-Pol II小分子抑制剂(SPIs)被报道,选择性抑制突变型亨廷顿蛋白基因的转录。这些spi的抑制机制以及与Pol II和Spt5的相互作用位点尚不完全清楚。在这项研究中,我们通过对接和分子动力学模拟预测了三种SPIs在Pol II-Spt5界面上的结合位点。三个分子中有两个分子与Spt5和Pol II结合较强,而另一个分子结合较松散,具有多个结合位点。强结合的sp5间接影响了退出位点的RNA和DNA动力学,因为DNA变得更灵活,而RNA通过增加与Spt5的相互作用而稳定。我们的研究结果表明SPIs诱导的转录抑制机制可能与spt5 -核酸相互作用有关,SPIs的强结合在一定程度上改变了spt5 -核酸相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binding of small molecule inhibitors to RNA polymerase-Spt5 complex impacts RNA and DNA stability

Spt5 is an elongation factor that associates with RNA polymerase II (Pol II) during transcription and has important functions in promoter-proximal pausing and elongation processivity. Spt5 was also recognized for its roles in the transcription of expanded-repeat genes that are related to neurodegenerative diseases. Recently, a set of Spt5-Pol II small molecule inhibitors (SPIs) were reported, which selectively inhibit mutant huntingtin gene transcription. Inhibition mechanisms as well as interaction sites of these SPIs with Pol II and Spt5 are not entirely known. In this study, we predicted the binding sites of three selected SPIs at the Pol II-Spt5 interface by docking and molecular dynamics simulations. Two molecules out of three demonstrated strong binding with Spt5 and Pol II, while the other molecule was more loosely bound and sampled multiple binding sites. Strongly bound SPIs indirectly affected RNA and DNA dynamics at the exit site as DNA became more flexible while RNA was stabilized by increased interactions with Spt5. Our results suggest that the transcription inhibition mechanism induced by SPIs can be related to Spt5-nucleic acid interactions, which were altered to some extent with strong binding of SPIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1