{"title":"利用预处理的藤草提取物,利用工程酿酒酵母W303-1a生产白藜芦醇。","authors":"Nishanthika Thenmozhi Kulasekaran, Mary Leema Thilakam, Dharani Gopal, Jung-Kul Lee, Jeya Marimuthu","doi":"10.1007/s10529-023-03441-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Assembly and construction of resveratrol production pathway in Saccharomyces cerevisiae for denovo production of resveratrol using seaweed extract as fermentation medium.</p><p><strong>Results: </strong>Genes involved in the production of resveratrol from tyrosine pathway, tyrosine ammonia lyase (FTAL) gene from Flavobacterium johnsoniae (FjTAL), the 4-coumarate:CoA ligase gene from Arabidopsis thaliana (4CL1) and the stilbene synthase gene from Vitis vinifera (VvSTS) were introduced into low copy, high copy and integrative vector and transformed into S. cerevisiae W303-1a. The resulting strains W303-1a/pARS-res5, W303-1a/2µ-res1 and W303-1a/IntUra-res9 produced a level of 2.39 ± 0.01, 3.33 ± 0.03 and 8.34 ± 0.03 mg resveratrol l<sup>-1</sup> respectively. CRISPR mediated integration at the δ locus resulted in 17.13 ± 1.1 mg resveratrol l<sup>-1</sup>. Gracilaria corticata extract was tested as a substrate for the growth of transformant to produce resveratrol. The strain produced a comparable level, 13.6 ± 0.54 mg resveratrol l<sup>-1</sup> when grown in seaweed extract medium.</p><p><strong>Conclusions: </strong>The strain W303-1a/IntδC-res1 utilized Gracillaria hydrolysate and produced 13.6 ± 0.54 mg resveratrol l<sup>-1</sup> and further investigations are being carried out focusing on pathway engineering and optimization of process parameters to enhance resveratrol yield.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"19-28"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denovo production of resveratrol by engineered Saccharomyces cerevisiae W303-1a using pretreated Gracilaria corticata extracts.\",\"authors\":\"Nishanthika Thenmozhi Kulasekaran, Mary Leema Thilakam, Dharani Gopal, Jung-Kul Lee, Jeya Marimuthu\",\"doi\":\"10.1007/s10529-023-03441-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Assembly and construction of resveratrol production pathway in Saccharomyces cerevisiae for denovo production of resveratrol using seaweed extract as fermentation medium.</p><p><strong>Results: </strong>Genes involved in the production of resveratrol from tyrosine pathway, tyrosine ammonia lyase (FTAL) gene from Flavobacterium johnsoniae (FjTAL), the 4-coumarate:CoA ligase gene from Arabidopsis thaliana (4CL1) and the stilbene synthase gene from Vitis vinifera (VvSTS) were introduced into low copy, high copy and integrative vector and transformed into S. cerevisiae W303-1a. The resulting strains W303-1a/pARS-res5, W303-1a/2µ-res1 and W303-1a/IntUra-res9 produced a level of 2.39 ± 0.01, 3.33 ± 0.03 and 8.34 ± 0.03 mg resveratrol l<sup>-1</sup> respectively. CRISPR mediated integration at the δ locus resulted in 17.13 ± 1.1 mg resveratrol l<sup>-1</sup>. Gracilaria corticata extract was tested as a substrate for the growth of transformant to produce resveratrol. The strain produced a comparable level, 13.6 ± 0.54 mg resveratrol l<sup>-1</sup> when grown in seaweed extract medium.</p><p><strong>Conclusions: </strong>The strain W303-1a/IntδC-res1 utilized Gracillaria hydrolysate and produced 13.6 ± 0.54 mg resveratrol l<sup>-1</sup> and further investigations are being carried out focusing on pathway engineering and optimization of process parameters to enhance resveratrol yield.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\" \",\"pages\":\"19-28\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-023-03441-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03441-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Denovo production of resveratrol by engineered Saccharomyces cerevisiae W303-1a using pretreated Gracilaria corticata extracts.
Objective: Assembly and construction of resveratrol production pathway in Saccharomyces cerevisiae for denovo production of resveratrol using seaweed extract as fermentation medium.
Results: Genes involved in the production of resveratrol from tyrosine pathway, tyrosine ammonia lyase (FTAL) gene from Flavobacterium johnsoniae (FjTAL), the 4-coumarate:CoA ligase gene from Arabidopsis thaliana (4CL1) and the stilbene synthase gene from Vitis vinifera (VvSTS) were introduced into low copy, high copy and integrative vector and transformed into S. cerevisiae W303-1a. The resulting strains W303-1a/pARS-res5, W303-1a/2µ-res1 and W303-1a/IntUra-res9 produced a level of 2.39 ± 0.01, 3.33 ± 0.03 and 8.34 ± 0.03 mg resveratrol l-1 respectively. CRISPR mediated integration at the δ locus resulted in 17.13 ± 1.1 mg resveratrol l-1. Gracilaria corticata extract was tested as a substrate for the growth of transformant to produce resveratrol. The strain produced a comparable level, 13.6 ± 0.54 mg resveratrol l-1 when grown in seaweed extract medium.
Conclusions: The strain W303-1a/IntδC-res1 utilized Gracillaria hydrolysate and produced 13.6 ± 0.54 mg resveratrol l-1 and further investigations are being carried out focusing on pathway engineering and optimization of process parameters to enhance resveratrol yield.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.