提高药物-靶标亲和力预测模型通用性的框架。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2023-11-01 DOI:10.1089/cmb.2023.0208
Riza ÖZçelİk, Alperen Bağ, Berk Atil, Melİh Barsbey, Arzucan ÖZgür, Elif Ozkirimli
{"title":"提高药物-靶标亲和力预测模型通用性的框架。","authors":"Riza ÖZçelİk, Alperen Bağ, Berk Atil, Melİh Barsbey, Arzucan ÖZgür, Elif Ozkirimli","doi":"10.1089/cmb.2023.0208","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Statistical models that accurately predict the binding affinity of an input ligand-protein pair can greatly accelerate drug discovery. Such models are trained on available ligand-protein interaction data sets, which may contain biases that lead the predictor models to learn data set-specific, spurious patterns instead of generalizable relationships. This leads the prediction performances of these models to drop dramatically for previously unseen biomolecules. Various approaches that aim to improve model generalizability either have limited applicability or introduce the risk of degrading overall prediction performance. In this article, we present DebiasedDTA, a novel training framework for drug-target affinity (DTA) prediction models that addresses data set biases to improve the generalizability of such models. DebiasedDTA relies on reweighting the training samples to achieve robust generalization, and is thus applicable to most DTA prediction models. Extensive experiments with different biomolecule representations, model architectures, and data sets demonstrate that DebiasedDTA achieves improved generalizability in predicting drug-target affinities.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":"30 11","pages":"1226-1239"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Improving the Generalizability of Drug-Target Affinity Prediction Models.\",\"authors\":\"Riza ÖZçelİk, Alperen Bağ, Berk Atil, Melİh Barsbey, Arzucan ÖZgür, Elif Ozkirimli\",\"doi\":\"10.1089/cmb.2023.0208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Statistical models that accurately predict the binding affinity of an input ligand-protein pair can greatly accelerate drug discovery. Such models are trained on available ligand-protein interaction data sets, which may contain biases that lead the predictor models to learn data set-specific, spurious patterns instead of generalizable relationships. This leads the prediction performances of these models to drop dramatically for previously unseen biomolecules. Various approaches that aim to improve model generalizability either have limited applicability or introduce the risk of degrading overall prediction performance. In this article, we present DebiasedDTA, a novel training framework for drug-target affinity (DTA) prediction models that addresses data set biases to improve the generalizability of such models. DebiasedDTA relies on reweighting the training samples to achieve robust generalization, and is thus applicable to most DTA prediction models. Extensive experiments with different biomolecule representations, model architectures, and data sets demonstrate that DebiasedDTA achieves improved generalizability in predicting drug-target affinities.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\"30 11\",\"pages\":\"1226-1239\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0208\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0208","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测输入配体-蛋白对结合亲和力的统计模型可以大大加快药物的发现。这些模型是在可用的配体-蛋白质相互作用数据集上进行训练的,这些数据集可能包含偏差,导致预测模型学习特定于数据集的虚假模式,而不是可推广的关系。这导致这些模型对以前看不见的生物分子的预测性能急剧下降。各种旨在提高模型泛化性的方法要么适用性有限,要么会引入降低整体预测性能的风险。在本文中,我们提出了DebiasedDTA,这是一种新的药物靶标亲和力(DTA)预测模型的训练框架,它解决了数据集偏差,以提高此类模型的泛化性。DebiasedDTA依赖于训练样本的重加权来实现鲁棒泛化,因此适用于大多数DTA预测模型。使用不同生物分子表示、模型架构和数据集进行的大量实验表明,DebiasedDTA在预测药物靶标亲和力方面实现了更好的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Improving the Generalizability of Drug-Target Affinity Prediction Models.

Statistical models that accurately predict the binding affinity of an input ligand-protein pair can greatly accelerate drug discovery. Such models are trained on available ligand-protein interaction data sets, which may contain biases that lead the predictor models to learn data set-specific, spurious patterns instead of generalizable relationships. This leads the prediction performances of these models to drop dramatically for previously unseen biomolecules. Various approaches that aim to improve model generalizability either have limited applicability or introduce the risk of degrading overall prediction performance. In this article, we present DebiasedDTA, a novel training framework for drug-target affinity (DTA) prediction models that addresses data set biases to improve the generalizability of such models. DebiasedDTA relies on reweighting the training samples to achieve robust generalization, and is thus applicable to most DTA prediction models. Extensive experiments with different biomolecule representations, model architectures, and data sets demonstrate that DebiasedDTA achieves improved generalizability in predicting drug-target affinities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models. Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1