Jiao Lu, Liu-Mei Zhang, Jing-Jing Liu, Yu-Ting Liu, Xiao-Ye Lin, Xue-Qi Wang, Yuan Zhang, Qiang Tang, Lin Liu
{"title":"高强度间歇训练可减轻运动诱导的hsp70辅助骨骼肌选择性自噬。","authors":"Jiao Lu, Liu-Mei Zhang, Jing-Jing Liu, Yu-Ting Liu, Xiao-Ye Lin, Xue-Qi Wang, Yuan Zhang, Qiang Tang, Lin Liu","doi":"10.1186/s12576-023-00884-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study was designed to probe the effect of chaperone-assisted selective autophagy (CASA) on the maintenance of proteostasis during exhaustive exercise and uncover the alteration of CASA in muscle fibers with pre-high-intensity interval training (HIIT) intervention-induced muscle adaptation in response to exhaustive exercise. Rats were randomly divided into a control group; an exhaustive exercise group; and an HIIT + exhaustive exercise group. Results show myofibril damage and BiP levels were increased after exhaustive exercise, and the levels of the HSP70, BAG3, ubiquitin, autophagy-related proteins, and their interactions were increased. HIIT intervention before exhaustive exercise could decrease myofibril injury and BiP levels, accompanied by down-regulation of HSP70/BAG3 complex and selective autophagy. In conclusion, exhaustive exercise promotes CASA to clear protein aggregation for keeping proteostasis in muscle fibers; pre-HIIT intervention improves myofibril injury and unfold protein response caused by exhaustive exercise, which might contribute to inhibit the augmentation of CASA.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"73 1","pages":"32"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717669/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-intensity interval training alleviates exhaustive exercise-induced HSP70-assisted selective autophagy in skeletal muscle.\",\"authors\":\"Jiao Lu, Liu-Mei Zhang, Jing-Jing Liu, Yu-Ting Liu, Xiao-Ye Lin, Xue-Qi Wang, Yuan Zhang, Qiang Tang, Lin Liu\",\"doi\":\"10.1186/s12576-023-00884-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was designed to probe the effect of chaperone-assisted selective autophagy (CASA) on the maintenance of proteostasis during exhaustive exercise and uncover the alteration of CASA in muscle fibers with pre-high-intensity interval training (HIIT) intervention-induced muscle adaptation in response to exhaustive exercise. Rats were randomly divided into a control group; an exhaustive exercise group; and an HIIT + exhaustive exercise group. Results show myofibril damage and BiP levels were increased after exhaustive exercise, and the levels of the HSP70, BAG3, ubiquitin, autophagy-related proteins, and their interactions were increased. HIIT intervention before exhaustive exercise could decrease myofibril injury and BiP levels, accompanied by down-regulation of HSP70/BAG3 complex and selective autophagy. In conclusion, exhaustive exercise promotes CASA to clear protein aggregation for keeping proteostasis in muscle fibers; pre-HIIT intervention improves myofibril injury and unfold protein response caused by exhaustive exercise, which might contribute to inhibit the augmentation of CASA.</p>\",\"PeriodicalId\":16832,\"journal\":{\"name\":\"Journal of Physiological Sciences\",\"volume\":\"73 1\",\"pages\":\"32\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-023-00884-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-023-00884-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
High-intensity interval training alleviates exhaustive exercise-induced HSP70-assisted selective autophagy in skeletal muscle.
This study was designed to probe the effect of chaperone-assisted selective autophagy (CASA) on the maintenance of proteostasis during exhaustive exercise and uncover the alteration of CASA in muscle fibers with pre-high-intensity interval training (HIIT) intervention-induced muscle adaptation in response to exhaustive exercise. Rats were randomly divided into a control group; an exhaustive exercise group; and an HIIT + exhaustive exercise group. Results show myofibril damage and BiP levels were increased after exhaustive exercise, and the levels of the HSP70, BAG3, ubiquitin, autophagy-related proteins, and their interactions were increased. HIIT intervention before exhaustive exercise could decrease myofibril injury and BiP levels, accompanied by down-regulation of HSP70/BAG3 complex and selective autophagy. In conclusion, exhaustive exercise promotes CASA to clear protein aggregation for keeping proteostasis in muscle fibers; pre-HIIT intervention improves myofibril injury and unfold protein response caused by exhaustive exercise, which might contribute to inhibit the augmentation of CASA.
期刊介绍:
The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound.
Fields covered:
Adaptation and environment
Autonomic nervous function
Biophysics
Cell sensors and signaling
Central nervous system and brain sciences
Endocrinology and metabolism
Excitable membranes and neural cell physiology
Exercise physiology
Gastrointestinal and kidney physiology
Heart and circulatory physiology
Molecular and cellular physiology
Muscle physiology
Physiome/systems biology
Respiration physiology
Senses.