{"title":"TRPV3 in skin thermosensation and temperature responses.","authors":"Jing Lei, Makoto Tominaga","doi":"10.1016/j.jphyss.2025.100005","DOIUrl":null,"url":null,"abstract":"<p><p>Human skin, as a sophisticated sensory organ, is able to detect subtle changes in ambient temperature. This thermosensory capability is primarily mediated by temperature-sensitive TRP channels expressed in both sensory neurons and keratinocytes. Among these, TRPV3, which responds to warm temperatures and plays a crucial role in various skin functions, is particularly notable. TRPV3 channels not only detect moderate warmth but are also sensitive to chemical ligands that evoke thermal sensations. The activation of TRPV3 by warm temperatures and compounds highlights its importance in the molecular mechanisms underlying skin thermosensation. This review mainly discusses the role of TRPV3, particularly its contribution to skin thermosensation and structural insights into its temperature sensitivity, providing an understanding of how TRPV3 modulates thermal perception at the molecular level.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"75 1","pages":"100005"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jphyss.2025.100005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human skin, as a sophisticated sensory organ, is able to detect subtle changes in ambient temperature. This thermosensory capability is primarily mediated by temperature-sensitive TRP channels expressed in both sensory neurons and keratinocytes. Among these, TRPV3, which responds to warm temperatures and plays a crucial role in various skin functions, is particularly notable. TRPV3 channels not only detect moderate warmth but are also sensitive to chemical ligands that evoke thermal sensations. The activation of TRPV3 by warm temperatures and compounds highlights its importance in the molecular mechanisms underlying skin thermosensation. This review mainly discusses the role of TRPV3, particularly its contribution to skin thermosensation and structural insights into its temperature sensitivity, providing an understanding of how TRPV3 modulates thermal perception at the molecular level.
期刊介绍:
The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound.
Fields covered:
Adaptation and environment
Autonomic nervous function
Biophysics
Cell sensors and signaling
Central nervous system and brain sciences
Endocrinology and metabolism
Excitable membranes and neural cell physiology
Exercise physiology
Gastrointestinal and kidney physiology
Heart and circulatory physiology
Molecular and cellular physiology
Muscle physiology
Physiome/systems biology
Respiration physiology
Senses.