Bassel M Hassen, Sarah H Rashedy, Ahmed Mostafa, Noura Mahrous, Mohamed S Nafie, Dalia Elebeedy, A Z Abdel Azeiz
{"title":"埃及海藻抗甲型流感病毒潜在抗病毒化合物的鉴定。","authors":"Bassel M Hassen, Sarah H Rashedy, Ahmed Mostafa, Noura Mahrous, Mohamed S Nafie, Dalia Elebeedy, A Z Abdel Azeiz","doi":"10.1080/14786419.2023.2284865","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza is a contagious viral infection of the respiratory tract, affecting nearly 10% of the world's population, each year. The aim of this study was to extract and identify antiviral compounds against the influenza-A virus (H1N1) from different species of Egyptian marine algae. Three samples of marine macroalgae species were extracted and the antiviral activity of the extracts were tested on Madin Darby Canine Kidney cells. The bioactive compounds present in the most active fractions were identified using gas chromatography-mass spectrometry (GC-MS), then the binding potentials of the identified compounds were examined towards neuraminidase (NA) of the influenza-A virus using molecular docking. The methanolic extract of <i>Sargassum aquifolium</i> showed promising <i>in-vitro</i> antiviral activity with a selectivity index (SI) value of 101. The GC-MS analysis showed twelve compounds and the molecular docking analysis found that tetradecanoic acid showed the strongest binding affinities towards the NA enzyme.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"4411-4418"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential antiviral compounds from Egyptian marine algae against influenza A virus.\",\"authors\":\"Bassel M Hassen, Sarah H Rashedy, Ahmed Mostafa, Noura Mahrous, Mohamed S Nafie, Dalia Elebeedy, A Z Abdel Azeiz\",\"doi\":\"10.1080/14786419.2023.2284865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza is a contagious viral infection of the respiratory tract, affecting nearly 10% of the world's population, each year. The aim of this study was to extract and identify antiviral compounds against the influenza-A virus (H1N1) from different species of Egyptian marine algae. Three samples of marine macroalgae species were extracted and the antiviral activity of the extracts were tested on Madin Darby Canine Kidney cells. The bioactive compounds present in the most active fractions were identified using gas chromatography-mass spectrometry (GC-MS), then the binding potentials of the identified compounds were examined towards neuraminidase (NA) of the influenza-A virus using molecular docking. The methanolic extract of <i>Sargassum aquifolium</i> showed promising <i>in-vitro</i> antiviral activity with a selectivity index (SI) value of 101. The GC-MS analysis showed twelve compounds and the molecular docking analysis found that tetradecanoic acid showed the strongest binding affinities towards the NA enzyme.</p>\",\"PeriodicalId\":18990,\"journal\":{\"name\":\"Natural Product Research\",\"volume\":\" \",\"pages\":\"4411-4418\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/14786419.2023.2284865\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2023.2284865","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Identification of potential antiviral compounds from Egyptian marine algae against influenza A virus.
Influenza is a contagious viral infection of the respiratory tract, affecting nearly 10% of the world's population, each year. The aim of this study was to extract and identify antiviral compounds against the influenza-A virus (H1N1) from different species of Egyptian marine algae. Three samples of marine macroalgae species were extracted and the antiviral activity of the extracts were tested on Madin Darby Canine Kidney cells. The bioactive compounds present in the most active fractions were identified using gas chromatography-mass spectrometry (GC-MS), then the binding potentials of the identified compounds were examined towards neuraminidase (NA) of the influenza-A virus using molecular docking. The methanolic extract of Sargassum aquifolium showed promising in-vitro antiviral activity with a selectivity index (SI) value of 101. The GC-MS analysis showed twelve compounds and the molecular docking analysis found that tetradecanoic acid showed the strongest binding affinities towards the NA enzyme.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.