{"title":"ILF3作为端粒r环读取器保护端粒免受异常同源重组。","authors":"Chuanle Wang, Yan Huang, Yue Yang, Ruofei Li, Yingying Li, Hongxin Qiu, Jiali Wu, Guang Shi, Wenbin Ma, Zhou Songyang","doi":"10.1093/procel/pwad054","DOIUrl":null,"url":null,"abstract":"<p><p>Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"493-511"},"PeriodicalIF":13.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214836/pdf/","citationCount":"0","resultStr":"{\"title\":\"ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader.\",\"authors\":\"Chuanle Wang, Yan Huang, Yue Yang, Ruofei Li, Yingying Li, Hongxin Qiu, Jiali Wu, Guang Shi, Wenbin Ma, Zhou Songyang\",\"doi\":\"10.1093/procel/pwad054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.</p>\",\"PeriodicalId\":20790,\"journal\":{\"name\":\"Protein & Cell\",\"volume\":\" \",\"pages\":\"493-511\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein & Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/procel/pwad054\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwad054","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader.
Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.
期刊介绍:
Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.