{"title":"铜超导体中的电荷相关性","authors":"Stephen M. Hayden, John M. Tranquada","doi":"10.1146/annurev-conmatphys-032922-094430","DOIUrl":null,"url":null,"abstract":"High-temperature superconductivity, with transition temperatures up to ≈134 K at ambient pressure, occurs in layered cuprate compounds. The conducting CuO<jats:sub>2</jats:sub> planes, which are universally present, are responsible for the superconductivity but also show a disposition to other competing states including spin and charge order. Charge-density-wave (CDW) order appears to be a universal property of cuprate superconductors. It has been studied via a multitude of probes including X-ray and neutron scattering, nuclear magnetic resonance, scanning probe techniques, electronic transport, and quantum oscillations. Here, we review the microscopic properties of the CDW order. We discuss the nature of the ordered state, that is, its symmetry and microscopic structure. Furthermore, we show how the CDW order is related to quenched disorder, host structure, symmetry breaking perturbations, and magnetic fields. We also describe measurements of dynamic collective charge excitations that are closely related to the quasi-static CDW order. Finally, we highlight some of the debated issues in the field, including the origin of the CDW order, the relationship to spin order, and the nature of the spatial CDW correlations.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"26 7","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge Correlations in Cuprate Superconductors\",\"authors\":\"Stephen M. Hayden, John M. Tranquada\",\"doi\":\"10.1146/annurev-conmatphys-032922-094430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature superconductivity, with transition temperatures up to ≈134 K at ambient pressure, occurs in layered cuprate compounds. The conducting CuO<jats:sub>2</jats:sub> planes, which are universally present, are responsible for the superconductivity but also show a disposition to other competing states including spin and charge order. Charge-density-wave (CDW) order appears to be a universal property of cuprate superconductors. It has been studied via a multitude of probes including X-ray and neutron scattering, nuclear magnetic resonance, scanning probe techniques, electronic transport, and quantum oscillations. Here, we review the microscopic properties of the CDW order. We discuss the nature of the ordered state, that is, its symmetry and microscopic structure. Furthermore, we show how the CDW order is related to quenched disorder, host structure, symmetry breaking perturbations, and magnetic fields. We also describe measurements of dynamic collective charge excitations that are closely related to the quasi-static CDW order. Finally, we highlight some of the debated issues in the field, including the origin of the CDW order, the relationship to spin order, and the nature of the spatial CDW correlations.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"26 7\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-032922-094430\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-032922-094430","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
High-temperature superconductivity, with transition temperatures up to ≈134 K at ambient pressure, occurs in layered cuprate compounds. The conducting CuO2 planes, which are universally present, are responsible for the superconductivity but also show a disposition to other competing states including spin and charge order. Charge-density-wave (CDW) order appears to be a universal property of cuprate superconductors. It has been studied via a multitude of probes including X-ray and neutron scattering, nuclear magnetic resonance, scanning probe techniques, electronic transport, and quantum oscillations. Here, we review the microscopic properties of the CDW order. We discuss the nature of the ordered state, that is, its symmetry and microscopic structure. Furthermore, we show how the CDW order is related to quenched disorder, host structure, symmetry breaking perturbations, and magnetic fields. We also describe measurements of dynamic collective charge excitations that are closely related to the quasi-static CDW order. Finally, we highlight some of the debated issues in the field, including the origin of the CDW order, the relationship to spin order, and the nature of the spatial CDW correlations.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.