动态平均场方法的最新应用

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2023-11-21 DOI:10.1146/annurev-conmatphys-040721-022848
Leticia F. Cugliandolo
{"title":"动态平均场方法的最新应用","authors":"Leticia F. Cugliandolo","doi":"10.1146/annurev-conmatphys-040721-022848","DOIUrl":null,"url":null,"abstract":"Rich out-of-equilibrium collective dynamics of strongly interacting large assemblies emerge in many areas of science. Some intriguing and not fully understood examples are the glassy arrest in atomic, molecular, or colloidal systems; flocking in natural or artificial active matter; and the organization and subsistence of ecosystems. The learning process, and ensuing amazing performance, of deep neural networks bears resemblance with some of the before-mentioned examples. Quantum mechanical extensions are also of interest. In exact or approximate manner, the evolution of these systems can be expressed in terms of a dynamical mean-field theory that not only captures many of their peculiar effects but also has predictive power. This short review presents a summary of recent developments of this approach with emphasis on applications on the examples mentioned above.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recent Applications of Dynamical Mean-Field Methods\",\"authors\":\"Leticia F. Cugliandolo\",\"doi\":\"10.1146/annurev-conmatphys-040721-022848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rich out-of-equilibrium collective dynamics of strongly interacting large assemblies emerge in many areas of science. Some intriguing and not fully understood examples are the glassy arrest in atomic, molecular, or colloidal systems; flocking in natural or artificial active matter; and the organization and subsistence of ecosystems. The learning process, and ensuing amazing performance, of deep neural networks bears resemblance with some of the before-mentioned examples. Quantum mechanical extensions are also of interest. In exact or approximate manner, the evolution of these systems can be expressed in terms of a dynamical mean-field theory that not only captures many of their peculiar effects but also has predictive power. This short review presents a summary of recent developments of this approach with emphasis on applications on the examples mentioned above.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-040721-022848\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-040721-022848","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 6

摘要

在许多科学领域都出现了强相互作用的大型装配体的丰富的非平衡集体动力学。一些有趣但尚未完全理解的例子是原子、分子或胶体系统中的玻璃状阻滞;聚集的:在天然或人工活性物质中聚集的;以及生态系统的组织和生存。深度神经网络的学习过程和随之而来的惊人表现与前面提到的一些例子有相似之处。量子力学的扩展也很有趣。以精确或近似的方式,这些系统的演化可以用动力学平均场理论来表达,该理论不仅捕捉了它们的许多特殊效应,而且具有预测能力。这篇简短的综述概述了这种方法的最新发展,重点介绍了在上述例子中的应用。预计《凝聚态物理年度评论》第15卷的最终在线出版日期为2024年3月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Applications of Dynamical Mean-Field Methods
Rich out-of-equilibrium collective dynamics of strongly interacting large assemblies emerge in many areas of science. Some intriguing and not fully understood examples are the glassy arrest in atomic, molecular, or colloidal systems; flocking in natural or artificial active matter; and the organization and subsistence of ecosystems. The learning process, and ensuing amazing performance, of deep neural networks bears resemblance with some of the before-mentioned examples. Quantum mechanical extensions are also of interest. In exact or approximate manner, the evolution of these systems can be expressed in terms of a dynamical mean-field theory that not only captures many of their peculiar effects but also has predictive power. This short review presents a summary of recent developments of this approach with emphasis on applications on the examples mentioned above.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Quantum Liquids: Emergent Higher-Rank Gauge Theory and Fractons Self-Assembly and Transport Phenomena of Colloids: Confinement and Geometrical Effects Human Rights and Science: Biographical Notes Hydrodynamic Electronic Transport Evolution from Bardeen–Cooper–Schrieffer to Bose–Einstein Condensation in Two Dimensions: Crossovers and Topological Quantum Phase Transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1