专利景观和引文网络分析揭示了使用微生物接种剂生物雾化的全球研究趋势:对可持续农业的洞察。

IF 1.8 4区 生物学 Q3 BIOLOGY Biologia futura Pub Date : 2023-12-01 Epub Date: 2023-11-23 DOI:10.1007/s42977-023-00194-z
Rahul Thakur, Saurabh Yadav
{"title":"专利景观和引文网络分析揭示了使用微生物接种剂生物雾化的全球研究趋势:对可持续农业的洞察。","authors":"Rahul Thakur, Saurabh Yadav","doi":"10.1007/s42977-023-00194-z","DOIUrl":null,"url":null,"abstract":"<p><p>As an alternative to harmful chemical fertilizers and toward fulfilling Sustainable Development Goals (SDGs) of the United Nations, growth promoting rhizobacterial bioinoculants, emerged as potential players. These act in multifunctional ways, including seed colonization, seed germination, stress tolerance and many more, leading to proper growth and development of plants. Biopriming seeds with these beneficial multi-trait microbes is an effective way to introduce them in the soil, and this is an example of bottom-up approach of rhizosphere engineering. Using such sustainable approach is promising and, to investigate and analyze, their research trends are of prime importance. Thus, data were retrieved using Lens and Scopus databases and used for patent landscaping and citation network analysis, respectively. For patent landscaping, documents obtained using customized keyword search were broadly from the past 35 years (1987-2022) and yielded 114 patents which were manually curated in title, abstract and claims (TAC). From the year 2000, interest in this area was observed which further gained momentum from the year 2008, and a maximum peak was observed in the year 2021. Patent profile (filed, granted and published) showed an upward trend during this tenure (1987-2022). In this research article, we aim to provide an overview of current research in this field, identify research hotspots, project future development prospects and make recommendations for further research. Patent landscaping and citation network analysis were used to analyze the recent trends in biopriming approaches using microbial bioinoculants for the first time to identify progress and hotspots in the field of seed priming with PGPRs.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"545-556"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patent landscaping and citation network analysis to reveal the global research trends in biopriming using microbial inoculants: an insight toward sustainable agriculture.\",\"authors\":\"Rahul Thakur, Saurabh Yadav\",\"doi\":\"10.1007/s42977-023-00194-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As an alternative to harmful chemical fertilizers and toward fulfilling Sustainable Development Goals (SDGs) of the United Nations, growth promoting rhizobacterial bioinoculants, emerged as potential players. These act in multifunctional ways, including seed colonization, seed germination, stress tolerance and many more, leading to proper growth and development of plants. Biopriming seeds with these beneficial multi-trait microbes is an effective way to introduce them in the soil, and this is an example of bottom-up approach of rhizosphere engineering. Using such sustainable approach is promising and, to investigate and analyze, their research trends are of prime importance. Thus, data were retrieved using Lens and Scopus databases and used for patent landscaping and citation network analysis, respectively. For patent landscaping, documents obtained using customized keyword search were broadly from the past 35 years (1987-2022) and yielded 114 patents which were manually curated in title, abstract and claims (TAC). From the year 2000, interest in this area was observed which further gained momentum from the year 2008, and a maximum peak was observed in the year 2021. Patent profile (filed, granted and published) showed an upward trend during this tenure (1987-2022). In this research article, we aim to provide an overview of current research in this field, identify research hotspots, project future development prospects and make recommendations for further research. Patent landscaping and citation network analysis were used to analyze the recent trends in biopriming approaches using microbial bioinoculants for the first time to identify progress and hotspots in the field of seed priming with PGPRs.</p>\",\"PeriodicalId\":8853,\"journal\":{\"name\":\"Biologia futura\",\"volume\":\" \",\"pages\":\"545-556\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia futura\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-023-00194-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-023-00194-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为有害化学肥料的替代品和实现联合国可持续发展目标(SDGs),促进生长的根瘤菌生物接种剂成为潜在的参与者。这些基因以多种方式发挥作用,包括种子定植、种子萌发、抗逆性等,从而导致植物的正常生长和发育。利用这些有益的多性状微生物对种子进行生物雾化是一种有效的将其引入土壤的方法,这是根际工程自下而上方法的一个例子。使用这种可持续的方法是有希望的,并且,为了调查和分析,他们的研究趋势是至关重要的。因此,使用Lens和Scopus数据库检索数据,并分别用于专利景观和引文网络分析。对于专利景观,使用自定义关键字搜索获得的文件大致来自过去35年(1987-2022),并获得114项专利,这些专利以标题,摘要和权利要求(TAC)的方式进行手动整理。从2000年开始,人们对这一领域的兴趣从2008年开始进一步增强,并在2021年达到了最高峰。在他任职期间(1987-2022年),专利概况(申请、授权和发布)呈上升趋势。在本研究文章中,我们旨在概述该领域的研究现状,确定研究热点,预测未来的发展前景,并提出进一步研究的建议。通过专利景观分析和引文网络分析,首次分析了利用微生物接种剂进行生物引物研究的最新趋势,确定了PGPRs种子引物研究的进展和热点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patent landscaping and citation network analysis to reveal the global research trends in biopriming using microbial inoculants: an insight toward sustainable agriculture.

As an alternative to harmful chemical fertilizers and toward fulfilling Sustainable Development Goals (SDGs) of the United Nations, growth promoting rhizobacterial bioinoculants, emerged as potential players. These act in multifunctional ways, including seed colonization, seed germination, stress tolerance and many more, leading to proper growth and development of plants. Biopriming seeds with these beneficial multi-trait microbes is an effective way to introduce them in the soil, and this is an example of bottom-up approach of rhizosphere engineering. Using such sustainable approach is promising and, to investigate and analyze, their research trends are of prime importance. Thus, data were retrieved using Lens and Scopus databases and used for patent landscaping and citation network analysis, respectively. For patent landscaping, documents obtained using customized keyword search were broadly from the past 35 years (1987-2022) and yielded 114 patents which were manually curated in title, abstract and claims (TAC). From the year 2000, interest in this area was observed which further gained momentum from the year 2008, and a maximum peak was observed in the year 2021. Patent profile (filed, granted and published) showed an upward trend during this tenure (1987-2022). In this research article, we aim to provide an overview of current research in this field, identify research hotspots, project future development prospects and make recommendations for further research. Patent landscaping and citation network analysis were used to analyze the recent trends in biopriming approaches using microbial bioinoculants for the first time to identify progress and hotspots in the field of seed priming with PGPRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia futura
Biologia futura Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍: How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica). In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.
期刊最新文献
Exploring the potential of plant astrobiology: adapting flora for extra-terrestrial habitats: a review. Enhancment of zebrafish (Danio rerio) immune and antioxidant systems using medicinal plant extracts encapsulated in alginate-chitosan nanocapsules with slow sustained release. Investigation of effect peripheral kisspeptin treatment on hypothalamo-pituitary-gonadal axis and hypothalamo-pituitary-adrenal axis in male rats. Characterisation of the complete chloroplast genome of Solanum tuberosum cv. White Lady Microbiological aspects of sewage odor problems in the urban environment - a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1