植物对气候变化的适应。

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Journal Pub Date : 2023-11-29 DOI:10.1042/BCJ20220580
Christine H Foyer, Ilse Kranner
{"title":"植物对气候变化的适应。","authors":"Christine H Foyer, Ilse Kranner","doi":"10.1042/BCJ20220580","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"480 22","pages":"1865-1869"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754325/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plant adaptation to climate change.\",\"authors\":\"Christine H Foyer, Ilse Kranner\",\"doi\":\"10.1042/BCJ20220580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"480 22\",\"pages\":\"1865-1869\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20220580\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20220580","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物对人类健康和福祉至关重要,并有助于保护环境免受气候变化的负面影响。它们是“同一个健康”战略的重要组成部分,旨在平衡和优化人、动物和环境的健康。至关重要的是,植物是基于自然的气候缓解解决方案的核心,尤其是因为土壤碳储存是缓解温室气体排放和相关气候变化的一项有吸引力的战略。农业依赖于基因纯净的高质量种子,这些种子没有害虫和病原体,并含有所需程度的基因纯度。这个主题集解决了该领域的关键问题,包括植物对气候变化的反应和适应的生化机制。该资料集包括对支持作物和森林恢复力的生物化学和分子机制的分析,以及对植物适应气候变化相关压力的考虑,包括干旱、洪水和热浪,以及病原体和害虫造成的日益严重的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant adaptation to climate change.

Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
期刊最新文献
Noncanonical RGS14 structural determinants control hormone-sensitive NPT2A-mediated phosphate transport. Telomerase RNA evolution: a journey from plant telomeres to broader eukaryotic diversity. The continued evolution of the L2 cephalosporinase in Stenotrophomonas maltophilia: a key driver of beta-lactam resistance. Retraction: Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Expanding the tagging toolbox for visualizing translation live.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1