{"title":"有限弹性静力学中纤维材料增强弹性介质力学的三维连续体模型","authors":"Chun I. L. Kim, Suprabha Islam, Seunghwa Yang","doi":"10.1007/s00161-023-01266-0","DOIUrl":null,"url":null,"abstract":"<div><p>A three-dimensional model for the mechanics of elastic/hyperelastic materials reinforced with bidirectional fibers is presented in finite elastostatics. This includes the constitutive formulation of matrix–fiber composite system and the derivation of the corresponding Euler equilibrium equation. The responses of the matrix material and reinforcing fibers are characterized, respectively, via the Neo-Hookean model and quadratic strain energy potential of the Green–Lagrange type. These are further refined by the Mooney–Rivlin strain energy model and the high-order polynomial energy potential of fibers to incorporate the nonlinear behaviors of the matrix material and fibers. Within the framework of differential geometry and strain-gradient elasticity, the general kinematics of bidirectional fibers, including the three-dimensional bending of a fiber and twist between the two adjoining fibers, are formulated, and subsequently integrated into the model of continuum deformation. The admissible boundary conditions are also derived by virtue of variational principles and virtual work statement. In particular, a dimension reduction process is applied to the resulting three-dimensional model through which a compatible two-dimensional model describing both the in-plane and out-of-plane deformations of thin elastic films reinforced with fiber mesh is obtained. To this end, model implementation and comparison with the experimental results are performed, indicating that the proposed model successfully predicts key design considerations of fiber mesh reinforced composite films including stress–strain responses, deformation profiles, shear strain distributions and local structure (a unit fiber mesh) deformations. The proposed model is unique in that it is formulated within the framework of differential geometry of surface to accommodate the three-dimensional kinematics of the composite, yet the resulting equations are reframed in the orthonormal basis for enhanced practical unitality and mathematical tractability. Hence, the resulting model may also serve as an alternative Cosserat theory of plates and shells arising in two-dimensional nonlinear elasticity.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 1","pages":"119 - 153"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-dimensional continuum model for the mechanics of an elastic medium reinforced with fibrous materials in finite elastostatics\",\"authors\":\"Chun I. L. Kim, Suprabha Islam, Seunghwa Yang\",\"doi\":\"10.1007/s00161-023-01266-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A three-dimensional model for the mechanics of elastic/hyperelastic materials reinforced with bidirectional fibers is presented in finite elastostatics. This includes the constitutive formulation of matrix–fiber composite system and the derivation of the corresponding Euler equilibrium equation. The responses of the matrix material and reinforcing fibers are characterized, respectively, via the Neo-Hookean model and quadratic strain energy potential of the Green–Lagrange type. These are further refined by the Mooney–Rivlin strain energy model and the high-order polynomial energy potential of fibers to incorporate the nonlinear behaviors of the matrix material and fibers. Within the framework of differential geometry and strain-gradient elasticity, the general kinematics of bidirectional fibers, including the three-dimensional bending of a fiber and twist between the two adjoining fibers, are formulated, and subsequently integrated into the model of continuum deformation. The admissible boundary conditions are also derived by virtue of variational principles and virtual work statement. In particular, a dimension reduction process is applied to the resulting three-dimensional model through which a compatible two-dimensional model describing both the in-plane and out-of-plane deformations of thin elastic films reinforced with fiber mesh is obtained. To this end, model implementation and comparison with the experimental results are performed, indicating that the proposed model successfully predicts key design considerations of fiber mesh reinforced composite films including stress–strain responses, deformation profiles, shear strain distributions and local structure (a unit fiber mesh) deformations. The proposed model is unique in that it is formulated within the framework of differential geometry of surface to accommodate the three-dimensional kinematics of the composite, yet the resulting equations are reframed in the orthonormal basis for enhanced practical unitality and mathematical tractability. Hence, the resulting model may also serve as an alternative Cosserat theory of plates and shells arising in two-dimensional nonlinear elasticity.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 1\",\"pages\":\"119 - 153\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01266-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01266-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
A three-dimensional continuum model for the mechanics of an elastic medium reinforced with fibrous materials in finite elastostatics
A three-dimensional model for the mechanics of elastic/hyperelastic materials reinforced with bidirectional fibers is presented in finite elastostatics. This includes the constitutive formulation of matrix–fiber composite system and the derivation of the corresponding Euler equilibrium equation. The responses of the matrix material and reinforcing fibers are characterized, respectively, via the Neo-Hookean model and quadratic strain energy potential of the Green–Lagrange type. These are further refined by the Mooney–Rivlin strain energy model and the high-order polynomial energy potential of fibers to incorporate the nonlinear behaviors of the matrix material and fibers. Within the framework of differential geometry and strain-gradient elasticity, the general kinematics of bidirectional fibers, including the three-dimensional bending of a fiber and twist between the two adjoining fibers, are formulated, and subsequently integrated into the model of continuum deformation. The admissible boundary conditions are also derived by virtue of variational principles and virtual work statement. In particular, a dimension reduction process is applied to the resulting three-dimensional model through which a compatible two-dimensional model describing both the in-plane and out-of-plane deformations of thin elastic films reinforced with fiber mesh is obtained. To this end, model implementation and comparison with the experimental results are performed, indicating that the proposed model successfully predicts key design considerations of fiber mesh reinforced composite films including stress–strain responses, deformation profiles, shear strain distributions and local structure (a unit fiber mesh) deformations. The proposed model is unique in that it is formulated within the framework of differential geometry of surface to accommodate the three-dimensional kinematics of the composite, yet the resulting equations are reframed in the orthonormal basis for enhanced practical unitality and mathematical tractability. Hence, the resulting model may also serve as an alternative Cosserat theory of plates and shells arising in two-dimensional nonlinear elasticity.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.