Gaia Grando , Giuseppe Sportelli , Giacomo Filippini , Michele Melchionna , Paolo Fornasiero
{"title":"石墨氮化碳与分子氧相遇:有机分子氧化的可持续光催化新方法","authors":"Gaia Grando , Giuseppe Sportelli , Giacomo Filippini , Michele Melchionna , Paolo Fornasiero","doi":"10.1016/j.nwnano.2023.100028","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, organic chemists have taken a resolute step toward green photocatalytic synthesis. In this regard, the oxidation of organic compounds with molecular oxygen is one of the most important classes of transformations, as it increases molecular complexity while avoiding the use of toxic and harmful oxidants. To this aim, the development of new and efficient photocatalysts capable of driving valuable oxidative reactions in a sustainable manner is highly desirable. These novel photocatalytic systems need to be metal-free, easy-to-prepare, and potentially recyclable. Carbon nitride (CN) fulfills all these requirements because of its outstanding physicochemical properties, thus emerging as a promising heterogeneous photocatalytic platform. The growing popularity of this material is also substantiated by its fast and facile preparation from readily available and inexpensive molecular precursors. This Review aims at highlighting the recent advances in synthesis of carbon nitride-based materials and their applications in organic photocatalysis for the oxidation of organic molecules in presence of molecular oxygen. Lastly, forward-looking opportunities within this intriguing research field are mentioned.</p></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"4 ","pages":"Article 100028"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666978123000260/pdfft?md5=98280230826e1f6e66f79f0e8da475b4&pid=1-s2.0-S2666978123000260-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphitic carbon nitride meets molecular oxygen: New sustainable photocatalytic ways for the oxidation of organic molecules\",\"authors\":\"Gaia Grando , Giuseppe Sportelli , Giacomo Filippini , Michele Melchionna , Paolo Fornasiero\",\"doi\":\"10.1016/j.nwnano.2023.100028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, organic chemists have taken a resolute step toward green photocatalytic synthesis. In this regard, the oxidation of organic compounds with molecular oxygen is one of the most important classes of transformations, as it increases molecular complexity while avoiding the use of toxic and harmful oxidants. To this aim, the development of new and efficient photocatalysts capable of driving valuable oxidative reactions in a sustainable manner is highly desirable. These novel photocatalytic systems need to be metal-free, easy-to-prepare, and potentially recyclable. Carbon nitride (CN) fulfills all these requirements because of its outstanding physicochemical properties, thus emerging as a promising heterogeneous photocatalytic platform. The growing popularity of this material is also substantiated by its fast and facile preparation from readily available and inexpensive molecular precursors. This Review aims at highlighting the recent advances in synthesis of carbon nitride-based materials and their applications in organic photocatalysis for the oxidation of organic molecules in presence of molecular oxygen. Lastly, forward-looking opportunities within this intriguing research field are mentioned.</p></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"4 \",\"pages\":\"Article 100028\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666978123000260/pdfft?md5=98280230826e1f6e66f79f0e8da475b4&pid=1-s2.0-S2666978123000260-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978123000260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978123000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graphitic carbon nitride meets molecular oxygen: New sustainable photocatalytic ways for the oxidation of organic molecules
In recent years, organic chemists have taken a resolute step toward green photocatalytic synthesis. In this regard, the oxidation of organic compounds with molecular oxygen is one of the most important classes of transformations, as it increases molecular complexity while avoiding the use of toxic and harmful oxidants. To this aim, the development of new and efficient photocatalysts capable of driving valuable oxidative reactions in a sustainable manner is highly desirable. These novel photocatalytic systems need to be metal-free, easy-to-prepare, and potentially recyclable. Carbon nitride (CN) fulfills all these requirements because of its outstanding physicochemical properties, thus emerging as a promising heterogeneous photocatalytic platform. The growing popularity of this material is also substantiated by its fast and facile preparation from readily available and inexpensive molecular precursors. This Review aims at highlighting the recent advances in synthesis of carbon nitride-based materials and their applications in organic photocatalysis for the oxidation of organic molecules in presence of molecular oxygen. Lastly, forward-looking opportunities within this intriguing research field are mentioned.