Fan Fengfeng , Cai Meng , Luo Xiong , Liu Manman , Yuan Huanran , Cheng Mingxing , Ayaz Ahmad , Li Nengwu , Li Shaoqing
{"title":"野生稻水稻幼苗期高温耐受性较强的新qtl","authors":"Fan Fengfeng , Cai Meng , Luo Xiong , Liu Manman , Yuan Huanran , Cheng Mingxing , Ayaz Ahmad , Li Nengwu , Li Shaoqing","doi":"10.1016/j.rsci.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming poses a threat to rice production. Breeding heat-tolerant rice is an effective and economical approach to address this challenge. African rice is a valuable genetic resource for developing heat-tolerant crops due to its intricate mechanism for adapting to high temperatures. <em>Oryza longistaminata</em>, a widely distributed wild rice species in Africa, may harbor an even richer gene pool for heat tolerance, which remains untapped. In this study, we identified three heat tolerance QTLs from <em>O</em>. <em>longistaminata</em> at the seedling stage, including novel heat tolerance loci <em>qTT4</em> and <em>qTT5</em>. Our findings demonstrated that the <em>O</em>. <em>longistaminata</em> alleles for these two QTLs can enhance the heat tolerance of rice seedlings. Remarkably, <em>qTT5</em> was mapped to a region spanning approximately 287.2 kb, which contains 46 expressing genes. Through the analysis of Gene Ontology and expression differences under heat induction, we identified four candidate genes. Our results lay the foundation for discovering heat tolerance genes underlying <em>O</em>. <em>longistaminata</em> and developing new genetic resources for heat-tolerant rice breeding.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 577-586"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000938/pdfft?md5=2ee70e03752b0f73beb1484d38c2443c&pid=1-s2.0-S1672630823000938-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel QTLs from Wild Rice Oryza longistaminata Confer Strong Tolerance to High Temperature at Seedling Stage\",\"authors\":\"Fan Fengfeng , Cai Meng , Luo Xiong , Liu Manman , Yuan Huanran , Cheng Mingxing , Ayaz Ahmad , Li Nengwu , Li Shaoqing\",\"doi\":\"10.1016/j.rsci.2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global warming poses a threat to rice production. Breeding heat-tolerant rice is an effective and economical approach to address this challenge. African rice is a valuable genetic resource for developing heat-tolerant crops due to its intricate mechanism for adapting to high temperatures. <em>Oryza longistaminata</em>, a widely distributed wild rice species in Africa, may harbor an even richer gene pool for heat tolerance, which remains untapped. In this study, we identified three heat tolerance QTLs from <em>O</em>. <em>longistaminata</em> at the seedling stage, including novel heat tolerance loci <em>qTT4</em> and <em>qTT5</em>. Our findings demonstrated that the <em>O</em>. <em>longistaminata</em> alleles for these two QTLs can enhance the heat tolerance of rice seedlings. Remarkably, <em>qTT5</em> was mapped to a region spanning approximately 287.2 kb, which contains 46 expressing genes. Through the analysis of Gene Ontology and expression differences under heat induction, we identified four candidate genes. Our results lay the foundation for discovering heat tolerance genes underlying <em>O</em>. <em>longistaminata</em> and developing new genetic resources for heat-tolerant rice breeding.</p></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":\"30 6\",\"pages\":\"Pages 577-586\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000938/pdfft?md5=2ee70e03752b0f73beb1484d38c2443c&pid=1-s2.0-S1672630823000938-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000938\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630823000938","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Novel QTLs from Wild Rice Oryza longistaminata Confer Strong Tolerance to High Temperature at Seedling Stage
Global warming poses a threat to rice production. Breeding heat-tolerant rice is an effective and economical approach to address this challenge. African rice is a valuable genetic resource for developing heat-tolerant crops due to its intricate mechanism for adapting to high temperatures. Oryza longistaminata, a widely distributed wild rice species in Africa, may harbor an even richer gene pool for heat tolerance, which remains untapped. In this study, we identified three heat tolerance QTLs from O. longistaminata at the seedling stage, including novel heat tolerance loci qTT4 and qTT5. Our findings demonstrated that the O. longistaminata alleles for these two QTLs can enhance the heat tolerance of rice seedlings. Remarkably, qTT5 was mapped to a region spanning approximately 287.2 kb, which contains 46 expressing genes. Through the analysis of Gene Ontology and expression differences under heat induction, we identified four candidate genes. Our results lay the foundation for discovering heat tolerance genes underlying O. longistaminata and developing new genetic resources for heat-tolerant rice breeding.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.