{"title":"以德国汉诺威附近的威尔登为例,对深层地热供热系统进行建模和经济评价","authors":"Pascal Schlagermann, Kurt M. Reinicke","doi":"10.1186/s40517-023-00276-0","DOIUrl":null,"url":null,"abstract":"<div><p>Germany desires to become climate-neutral in its heat supply by 2045. From 2024 onward communities are legally required to develop a plan documenting how the objective will be achieved. Geothermal resources can be a major building block to reach the aspirational target if they can be developed at competitive costs. To evaluate the economic potential of geothermal resources is time and money consuming. Questions which need to be addressed in the context of such evaluations are: how can an economic recovery of geothermal heat be achieved, how can subsurface risks associated with an exploration be managed, and how competitive is a deep geothermal energy recovery compared to other options of heat supply? These questions are key to a development of deep geothermal heat, especially if the geothermal conditions are not as prominent as in already realized projects, but less favorable as in the deep clastic sediments of the North German Basin. With this contribution a procedure is presented and used to determine net present values and the associated levelized costs for deep hydrothermal heat recovery systems. It consists of modelling the geothermal cycle, sizing all necessary components, costing them, and calculating net present value and levelized cost. The thermal model is verified by comparing the modelled state variables pressure and temperature at relevant state points of the thermal cycle with actual data of a geothermal project. The cost model is validated with biding results and cost information from actual projects and modified as appropriate. In applying the model to a setting in the Hannover–Celle area with temperatures of around 70 °C, conditions are determined, which lead to positive net present values. The degree of their influence is determined in sensitivity analyses allowing a systemic optimization. The results show that for a coupled heat plant with geothermal heat supplied at baseload conditions, levelized costs of approx. 8 cents/kWh are achievable. The presented thermodynamic and cost models are considered helpful instruments for developing preliminary conceptual estimates, strategies for optimization, and portfolio management.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00276-0","citationCount":"0","resultStr":"{\"title\":\"Modeling and economic evaluation of deep geothermal heat supply systems using the example of the Wealden near Hannover, Germany\",\"authors\":\"Pascal Schlagermann, Kurt M. Reinicke\",\"doi\":\"10.1186/s40517-023-00276-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Germany desires to become climate-neutral in its heat supply by 2045. From 2024 onward communities are legally required to develop a plan documenting how the objective will be achieved. Geothermal resources can be a major building block to reach the aspirational target if they can be developed at competitive costs. To evaluate the economic potential of geothermal resources is time and money consuming. Questions which need to be addressed in the context of such evaluations are: how can an economic recovery of geothermal heat be achieved, how can subsurface risks associated with an exploration be managed, and how competitive is a deep geothermal energy recovery compared to other options of heat supply? These questions are key to a development of deep geothermal heat, especially if the geothermal conditions are not as prominent as in already realized projects, but less favorable as in the deep clastic sediments of the North German Basin. With this contribution a procedure is presented and used to determine net present values and the associated levelized costs for deep hydrothermal heat recovery systems. It consists of modelling the geothermal cycle, sizing all necessary components, costing them, and calculating net present value and levelized cost. The thermal model is verified by comparing the modelled state variables pressure and temperature at relevant state points of the thermal cycle with actual data of a geothermal project. The cost model is validated with biding results and cost information from actual projects and modified as appropriate. In applying the model to a setting in the Hannover–Celle area with temperatures of around 70 °C, conditions are determined, which lead to positive net present values. The degree of their influence is determined in sensitivity analyses allowing a systemic optimization. The results show that for a coupled heat plant with geothermal heat supplied at baseload conditions, levelized costs of approx. 8 cents/kWh are achievable. The presented thermodynamic and cost models are considered helpful instruments for developing preliminary conceptual estimates, strategies for optimization, and portfolio management.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00276-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-023-00276-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00276-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modeling and economic evaluation of deep geothermal heat supply systems using the example of the Wealden near Hannover, Germany
Germany desires to become climate-neutral in its heat supply by 2045. From 2024 onward communities are legally required to develop a plan documenting how the objective will be achieved. Geothermal resources can be a major building block to reach the aspirational target if they can be developed at competitive costs. To evaluate the economic potential of geothermal resources is time and money consuming. Questions which need to be addressed in the context of such evaluations are: how can an economic recovery of geothermal heat be achieved, how can subsurface risks associated with an exploration be managed, and how competitive is a deep geothermal energy recovery compared to other options of heat supply? These questions are key to a development of deep geothermal heat, especially if the geothermal conditions are not as prominent as in already realized projects, but less favorable as in the deep clastic sediments of the North German Basin. With this contribution a procedure is presented and used to determine net present values and the associated levelized costs for deep hydrothermal heat recovery systems. It consists of modelling the geothermal cycle, sizing all necessary components, costing them, and calculating net present value and levelized cost. The thermal model is verified by comparing the modelled state variables pressure and temperature at relevant state points of the thermal cycle with actual data of a geothermal project. The cost model is validated with biding results and cost information from actual projects and modified as appropriate. In applying the model to a setting in the Hannover–Celle area with temperatures of around 70 °C, conditions are determined, which lead to positive net present values. The degree of their influence is determined in sensitivity analyses allowing a systemic optimization. The results show that for a coupled heat plant with geothermal heat supplied at baseload conditions, levelized costs of approx. 8 cents/kWh are achievable. The presented thermodynamic and cost models are considered helpful instruments for developing preliminary conceptual estimates, strategies for optimization, and portfolio management.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.