Zhiwei Shi , Qingguo Peng , Hao Wang , Zhixin Huang , Hui Liu , Xinghua Tian , Feng Yan , Ruixue Yin
{"title":"甲醇蒸汽重整制氢催化剂、反应器、反应机理及脱CO技术综述","authors":"Zhiwei Shi , Qingguo Peng , Hao Wang , Zhixin Huang , Hui Liu , Xinghua Tian , Feng Yan , Ruixue Yin","doi":"10.1016/j.fuproc.2023.108000","DOIUrl":null,"url":null,"abstract":"<div><p><span>Methanol steam reforming (MSR) for </span>hydrogen production<span><span><span> is a significant and promising clean energy technology<span>. So, a comprehensive review focused on the analysis of high-temperature reforming, low-temperature reforming, autothermal reforming, and CO removal in MSR is conducted. The selection and design of catalysts play a crucial role in enhancing the efficiency and stability of MSR, which can improve the selectivity of methanol decomposition and </span></span>hydrogen generation, and reduce the occurrence of side reactions. The optimized reactor design and better thermal management technology effectively reduce heat loss and achieve high energy efficiency in methanol autothermal reforming. Furthermore, gaining profound insights into the reaction mechanisms plays a </span>pivotal role<span><span> in guiding catalyst development and reactor enhancements, which is instrumental in addressing catalyst deactivation, catalyst longevity, and undesired side reactions. CO removal technology plays a pivotal role in the hydrogen production process of MSR. It is employed to eliminate CO impurities, thus enhancing the purity of the hydrogen production. This review contributes valuable insights into high-purity hydrogen production, catalyst stability improvement, and key challenges linked to CO removal in MSR, facilitating advancements in </span>hydrogen technology.</span></span></p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"252 ","pages":"Article 108000"},"PeriodicalIF":7.2000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Catalyst, reactor, reaction mechanism and CO remove technology in methanol steam reforming for hydrogen production: A review\",\"authors\":\"Zhiwei Shi , Qingguo Peng , Hao Wang , Zhixin Huang , Hui Liu , Xinghua Tian , Feng Yan , Ruixue Yin\",\"doi\":\"10.1016/j.fuproc.2023.108000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Methanol steam reforming (MSR) for </span>hydrogen production<span><span><span> is a significant and promising clean energy technology<span>. So, a comprehensive review focused on the analysis of high-temperature reforming, low-temperature reforming, autothermal reforming, and CO removal in MSR is conducted. The selection and design of catalysts play a crucial role in enhancing the efficiency and stability of MSR, which can improve the selectivity of methanol decomposition and </span></span>hydrogen generation, and reduce the occurrence of side reactions. The optimized reactor design and better thermal management technology effectively reduce heat loss and achieve high energy efficiency in methanol autothermal reforming. Furthermore, gaining profound insights into the reaction mechanisms plays a </span>pivotal role<span><span> in guiding catalyst development and reactor enhancements, which is instrumental in addressing catalyst deactivation, catalyst longevity, and undesired side reactions. CO removal technology plays a pivotal role in the hydrogen production process of MSR. It is employed to eliminate CO impurities, thus enhancing the purity of the hydrogen production. This review contributes valuable insights into high-purity hydrogen production, catalyst stability improvement, and key challenges linked to CO removal in MSR, facilitating advancements in </span>hydrogen technology.</span></span></p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"252 \",\"pages\":\"Article 108000\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838202300348X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202300348X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Catalyst, reactor, reaction mechanism and CO remove technology in methanol steam reforming for hydrogen production: A review
Methanol steam reforming (MSR) for hydrogen production is a significant and promising clean energy technology. So, a comprehensive review focused on the analysis of high-temperature reforming, low-temperature reforming, autothermal reforming, and CO removal in MSR is conducted. The selection and design of catalysts play a crucial role in enhancing the efficiency and stability of MSR, which can improve the selectivity of methanol decomposition and hydrogen generation, and reduce the occurrence of side reactions. The optimized reactor design and better thermal management technology effectively reduce heat loss and achieve high energy efficiency in methanol autothermal reforming. Furthermore, gaining profound insights into the reaction mechanisms plays a pivotal role in guiding catalyst development and reactor enhancements, which is instrumental in addressing catalyst deactivation, catalyst longevity, and undesired side reactions. CO removal technology plays a pivotal role in the hydrogen production process of MSR. It is employed to eliminate CO impurities, thus enhancing the purity of the hydrogen production. This review contributes valuable insights into high-purity hydrogen production, catalyst stability improvement, and key challenges linked to CO removal in MSR, facilitating advancements in hydrogen technology.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.