Jodie R Malcolm, Nattanan Sajjaboontawee, Serife Yerlikaya, Charlotte Plunkett-Jones, Peter J Boxall, William J Brackenbury
{"title":"电压门控钠通道,钠转运和实体肿瘤的进展。","authors":"Jodie R Malcolm, Nattanan Sajjaboontawee, Serife Yerlikaya, Charlotte Plunkett-Jones, Peter J Boxall, William J Brackenbury","doi":"10.1016/bs.ctm.2023.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium (Na<sup>+</sup>) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na<sup>+</sup> transporters. In particular, the α subunits of voltage gated Na<sup>+</sup> channels (VGSCs) raise intracellular Na<sup>+</sup> concentration ([Na<sup>+</sup>]<sub>i</sub>) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"92 ","pages":"71-98"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage-gated sodium channels, sodium transport and progression of solid tumours.\",\"authors\":\"Jodie R Malcolm, Nattanan Sajjaboontawee, Serife Yerlikaya, Charlotte Plunkett-Jones, Peter J Boxall, William J Brackenbury\",\"doi\":\"10.1016/bs.ctm.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium (Na<sup>+</sup>) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na<sup>+</sup> transporters. In particular, the α subunits of voltage gated Na<sup>+</sup> channels (VGSCs) raise intracellular Na<sup>+</sup> concentration ([Na<sup>+</sup>]<sub>i</sub>) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":\"92 \",\"pages\":\"71-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2023.09.005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2023.09.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Voltage-gated sodium channels, sodium transport and progression of solid tumours.
Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
期刊介绍:
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.