不良事件分析的回归模型综述。

IF 4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Safety Pub Date : 2024-03-01 Epub Date: 2023-11-25 DOI:10.1007/s40264-023-01380-7
Elsa Coz, Mathieu Fauvernier, Delphine Maucort-Boulch
{"title":"不良事件分析的回归模型综述。","authors":"Elsa Coz, Mathieu Fauvernier, Delphine Maucort-Boulch","doi":"10.1007/s40264-023-01380-7","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last few years, several review articles described the adverse events analysis as sub-optimal in clinical trials. Indeed, the context surrounding adverse events analyses often imply an overwhelming number of events, a lack of power to find associations, but also a lack of specific training regarding those complex data. In randomized controlled trials or in observational studies, comparing the occurrence of adverse events according to a covariable of interest (e.g., treatment) is a recurrent question in the analysis of drug safety data, and adjusting other important factors is often relevant. This article is an overview of the existing regression models that may be considered to compare adverse events and to discuss model choice regarding the characteristics of the adverse events of interest. Many dimensions may be relevant to compare the adverse events between patients, (e.g., timing, recurrence, and severity). Recent efforts have been made to cover all of them. For chronic treatments, the occurrence of intercurrent events during the patient follow-up usually needs the modeling approach to be adapted (at least with regard to their interpretation). Moreover, analysis based on regression models should not be limited to the estimation of relative effects. Indeed, absolute risks stemming from the model should be presented systematically to help the interpretation, to validate the model, and to encourage comparison of studies.</p>","PeriodicalId":11382,"journal":{"name":"Drug Safety","volume":" ","pages":"205-216"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874334/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Overview of Regression Models for Adverse Events Analysis.\",\"authors\":\"Elsa Coz, Mathieu Fauvernier, Delphine Maucort-Boulch\",\"doi\":\"10.1007/s40264-023-01380-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last few years, several review articles described the adverse events analysis as sub-optimal in clinical trials. Indeed, the context surrounding adverse events analyses often imply an overwhelming number of events, a lack of power to find associations, but also a lack of specific training regarding those complex data. In randomized controlled trials or in observational studies, comparing the occurrence of adverse events according to a covariable of interest (e.g., treatment) is a recurrent question in the analysis of drug safety data, and adjusting other important factors is often relevant. This article is an overview of the existing regression models that may be considered to compare adverse events and to discuss model choice regarding the characteristics of the adverse events of interest. Many dimensions may be relevant to compare the adverse events between patients, (e.g., timing, recurrence, and severity). Recent efforts have been made to cover all of them. For chronic treatments, the occurrence of intercurrent events during the patient follow-up usually needs the modeling approach to be adapted (at least with regard to their interpretation). Moreover, analysis based on regression models should not be limited to the estimation of relative effects. Indeed, absolute risks stemming from the model should be presented systematically to help the interpretation, to validate the model, and to encourage comparison of studies.</p>\",\"PeriodicalId\":11382,\"journal\":{\"name\":\"Drug Safety\",\"volume\":\" \",\"pages\":\"205-216\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40264-023-01380-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40264-023-01380-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,一些评论文章描述了不良事件分析在临床试验中的次优。事实上,围绕不良事件分析的背景往往意味着大量的事件,缺乏发现关联的能力,但也缺乏针对这些复杂数据的具体培训。在随机对照试验或观察性研究中,根据感兴趣的协变量(如治疗)比较不良事件的发生是药物安全性数据分析中反复出现的问题,调整其他重要因素往往是相关的。本文概述了可用于比较不良事件的现有回归模型,并讨论了有关感兴趣的不良事件特征的模型选择。许多维度可能与比较患者之间的不良事件相关(例如,时间、复发和严重程度)。最近已作出努力,以涵盖所有这些问题。对于慢性治疗,患者随访期间发生的并发事件通常需要适应建模方法(至少在其解释方面)。此外,基于回归模型的分析不应局限于相对效应的估计。的确,应该系统地提出源自模型的绝对风险,以帮助解释,验证模型,并鼓励比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Overview of Regression Models for Adverse Events Analysis.

Over the last few years, several review articles described the adverse events analysis as sub-optimal in clinical trials. Indeed, the context surrounding adverse events analyses often imply an overwhelming number of events, a lack of power to find associations, but also a lack of specific training regarding those complex data. In randomized controlled trials or in observational studies, comparing the occurrence of adverse events according to a covariable of interest (e.g., treatment) is a recurrent question in the analysis of drug safety data, and adjusting other important factors is often relevant. This article is an overview of the existing regression models that may be considered to compare adverse events and to discuss model choice regarding the characteristics of the adverse events of interest. Many dimensions may be relevant to compare the adverse events between patients, (e.g., timing, recurrence, and severity). Recent efforts have been made to cover all of them. For chronic treatments, the occurrence of intercurrent events during the patient follow-up usually needs the modeling approach to be adapted (at least with regard to their interpretation). Moreover, analysis based on regression models should not be limited to the estimation of relative effects. Indeed, absolute risks stemming from the model should be presented systematically to help the interpretation, to validate the model, and to encourage comparison of studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Safety
Drug Safety 医学-毒理学
CiteScore
7.60
自引率
7.10%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Drug Safety is the official journal of the International Society of Pharmacovigilance. The journal includes: Overviews of contentious or emerging issues. Comprehensive narrative reviews that provide an authoritative source of information on epidemiology, clinical features, prevention and management of adverse effects of individual drugs and drug classes. In-depth benefit-risk assessment of adverse effect and efficacy data for a drug in a defined therapeutic area. Systematic reviews (with or without meta-analyses) that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by the PRISMA statement. Original research articles reporting the results of well-designed studies in disciplines such as pharmacoepidemiology, pharmacovigilance, pharmacology and toxicology, and pharmacogenomics. Editorials and commentaries on topical issues. Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Drug Safety Drugs may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.
期刊最新文献
RETRACTED ARTICLE: Long-Term Safety Analysis of the BBV152 Coronavirus Vaccine in Adolescents and Adults: Findings from a 1-Year Prospective Study in North India. A Calculated Risk: Evaluation of QTc Drug-Drug Interaction (DDI) Clinical Decision Support (CDS) Alerts and Performance of the Tisdale Risk Score Calculator. Description and Validation of a Novel AI Tool, LabelComp, for the Identification of Adverse Event Changes in FDA Labeling. Examining the Effect of Missing Data and Unmeasured Confounding on External Comparator Studies: Case Studies and Simulations. Unveiling the Burden of Drug-Induced Impulsivity: A Network Analysis of the FDA Adverse Event Reporting System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1