Bingxin Liu, Jiawei Zhao, Xuehui Chen, Kun Fang, Weidong Yang, Xuelan Zhang, Chang Shu
{"title":"基于流固相互作用的单侧和双侧肾动脉狭窄血流动力学分析。","authors":"Bingxin Liu, Jiawei Zhao, Xuehui Chen, Kun Fang, Weidong Yang, Xuelan Zhang, Chang Shu","doi":"10.1080/10255842.2023.2282949","DOIUrl":null,"url":null,"abstract":"<p><p>Renal artery stenosis (RAS) hypertension is a common type of secondary hypertension. This paper aimed to explore how unilateral renal artery stenosis (Uni-RAS) and bilateral renal artery stenosis (Bi-RAS) caused renovascular hypertension with the fluid-structure interaction (FSI) method. Based on a real RAS model, 20 ideal models with different stenosis degrees were established by modifying the stenosis segment. The hemodynamic parameters at different degrees of stenosis, mass flow rate (MFR), pressure drop (PD), fractional flow reserve (FFR), oscillatory shear index (OSI), and relative residence time (RRT), were numerically calculated by the computational fluid dynamics (CFD) method. The numerical results showed that RAS caused the decrease of MFR, and the increase of PD and the proportion of high OSI and high RRT. In the case of RAS, it could not be regarded as a reference indicator for causing renovascular hypertension that the value of FFR was greater than 0.9. In addition, the results of the statistical analysis indicated that Uni-RAS and Bi-RAS were statistically different for MFR, PD and the proportion of high RRT.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"25-36"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemodynamic analysis of unilateral and bilateral renal artery stenosis based on fluid-structure interaction.\",\"authors\":\"Bingxin Liu, Jiawei Zhao, Xuehui Chen, Kun Fang, Weidong Yang, Xuelan Zhang, Chang Shu\",\"doi\":\"10.1080/10255842.2023.2282949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renal artery stenosis (RAS) hypertension is a common type of secondary hypertension. This paper aimed to explore how unilateral renal artery stenosis (Uni-RAS) and bilateral renal artery stenosis (Bi-RAS) caused renovascular hypertension with the fluid-structure interaction (FSI) method. Based on a real RAS model, 20 ideal models with different stenosis degrees were established by modifying the stenosis segment. The hemodynamic parameters at different degrees of stenosis, mass flow rate (MFR), pressure drop (PD), fractional flow reserve (FFR), oscillatory shear index (OSI), and relative residence time (RRT), were numerically calculated by the computational fluid dynamics (CFD) method. The numerical results showed that RAS caused the decrease of MFR, and the increase of PD and the proportion of high OSI and high RRT. In the case of RAS, it could not be regarded as a reference indicator for causing renovascular hypertension that the value of FFR was greater than 0.9. In addition, the results of the statistical analysis indicated that Uni-RAS and Bi-RAS were statistically different for MFR, PD and the proportion of high RRT.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"25-36\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2282949\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2282949","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hemodynamic analysis of unilateral and bilateral renal artery stenosis based on fluid-structure interaction.
Renal artery stenosis (RAS) hypertension is a common type of secondary hypertension. This paper aimed to explore how unilateral renal artery stenosis (Uni-RAS) and bilateral renal artery stenosis (Bi-RAS) caused renovascular hypertension with the fluid-structure interaction (FSI) method. Based on a real RAS model, 20 ideal models with different stenosis degrees were established by modifying the stenosis segment. The hemodynamic parameters at different degrees of stenosis, mass flow rate (MFR), pressure drop (PD), fractional flow reserve (FFR), oscillatory shear index (OSI), and relative residence time (RRT), were numerically calculated by the computational fluid dynamics (CFD) method. The numerical results showed that RAS caused the decrease of MFR, and the increase of PD and the proportion of high OSI and high RRT. In the case of RAS, it could not be regarded as a reference indicator for causing renovascular hypertension that the value of FFR was greater than 0.9. In addition, the results of the statistical analysis indicated that Uni-RAS and Bi-RAS were statistically different for MFR, PD and the proportion of high RRT.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.