细胞外基质:骨骼肌再生的关键因素。

Khurshid Ahmad, Sibhghatulla Shaikh, Hee Jin Chun, Shahid Ali, Jeong Ho Lim, Syed Sayeed Ahmad, Eun Ju Lee, Inho Choi
{"title":"细胞外基质:骨骼肌再生的关键因素。","authors":"Khurshid Ahmad, Sibhghatulla Shaikh, Hee Jin Chun, Shahid Ali, Jeong Ho Lim, Syed Sayeed Ahmad, Eun Ju Lee, Inho Choi","doi":"10.1186/s41232-023-00308-z","DOIUrl":null,"url":null,"abstract":"<p><p>The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"58"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review.\",\"authors\":\"Khurshid Ahmad, Sibhghatulla Shaikh, Hee Jin Chun, Shahid Ali, Jeong Ho Lim, Syed Sayeed Ahmad, Eun Ju Lee, Inho Choi\",\"doi\":\"10.1186/s41232-023-00308-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.</p>\",\"PeriodicalId\":94041,\"journal\":{\"name\":\"Inflammation and regeneration\",\"volume\":\"43 1\",\"pages\":\"58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-023-00308-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41232-023-00308-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌(SM)对损伤、损伤或疾病的再生能力是一个高度复杂的过程,涉及多种细胞类型和生物分子因素的协调活动。其中,细胞外基质(ECM)被认为是SM再生能力的基本组成部分。本文简要讨论了肌卫星细胞(MSCs)、其他细胞和ECM成分在SM肌肉发生和再生中的作用,以及它们的失调对这些过程的影响。此外,我们回顾了各种类型的ECM支架和用于SM再生的生物材料,它们的应用,ECM支架研究的最新进展,以及它们对组织工程和SM再生的影响,特别是在严重肌肉损伤的情况下,经常导致大量肌肉损失和再生能力受损。本综述旨在全面概述肌SM的发生和再生、用于肌肉再生的干细胞、ECM在肌SM再生中的意义,并加深对ECM支架在肌SM再生中的重要作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review.

The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
0
期刊最新文献
Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Designer immune cells. Macrophage depletion in inflamed rat knees prevents the activation of synovial mesenchymal stem cells by weakening Nampt and Spp1 signaling. The new era for the research on the regulation of microorganism-induced inflammation. Focusing on exosomes to overcome the existing bottlenecks of CAR-T cell therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1