森林环境中氧化氘沉积速度的评价。

IF 1 4区 医学 Q4 ENVIRONMENTAL SCIENCES Health physics Pub Date : 2024-03-01 Epub Date: 2023-11-24 DOI:10.1097/HP.0000000000001769
Brian J Viner, Ashlee Swindle, Lucas Angelette, Candace J Langan, Wendy W Kuhne
{"title":"森林环境中氧化氘沉积速度的评价。","authors":"Brian J Viner, Ashlee Swindle, Lucas Angelette, Candace J Langan, Wendy W Kuhne","doi":"10.1097/HP.0000000000001769","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Field experiments were performed to evaluate the deposition velocity of tritium oxide within a forest environment at the Savannah River Site near Aiken, SC. Field releases were designed to guide selection of deposition velocity values for use in safety-basis modeling. Six releases of deuterium oxide were conducted in 2020 and 2021 with corresponding air samples during and following each release. Samples were analyzed to determine the deuterium-to-hydrogen ratio in water and converted to concentrations of deuterium in the air during the experiment. Measurements were compared to prior model simulations to evaluate model performance and deposition velocity estimates. Field releases demonstrated vertical and horizontal mixing of a plume in a forest. Predicted deposition velocities ranged from 2.4 to 5.4 cm s -1 on average. In all cases, model simulations underpredicted deuterium concentration by 1 to 2 orders of magnitude, indicating the model does not sufficiently mix the plume into the forest. While the model underestimated the transfer of material downward through the forest, it does suggest that the model's estimates are conservative for making downwind dose estimates because of lower plume depletion, leading to higher concentration and dose estimates. While the field releases do not cover all possible meteorological conditions, we conclude it is appropriate to use a non-zero deposition velocity when performing safety-basis modeling of tritium oxide based on conservatism within the model. A recommendation of 1.0 cm s -1 as a deposition velocity is made, which is beyond the 95 th percentile value estimated from the prior modeling study.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"125-133"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Deuterium Oxide Deposition Velocity over a Forest Environment.\",\"authors\":\"Brian J Viner, Ashlee Swindle, Lucas Angelette, Candace J Langan, Wendy W Kuhne\",\"doi\":\"10.1097/HP.0000000000001769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Field experiments were performed to evaluate the deposition velocity of tritium oxide within a forest environment at the Savannah River Site near Aiken, SC. Field releases were designed to guide selection of deposition velocity values for use in safety-basis modeling. Six releases of deuterium oxide were conducted in 2020 and 2021 with corresponding air samples during and following each release. Samples were analyzed to determine the deuterium-to-hydrogen ratio in water and converted to concentrations of deuterium in the air during the experiment. Measurements were compared to prior model simulations to evaluate model performance and deposition velocity estimates. Field releases demonstrated vertical and horizontal mixing of a plume in a forest. Predicted deposition velocities ranged from 2.4 to 5.4 cm s -1 on average. In all cases, model simulations underpredicted deuterium concentration by 1 to 2 orders of magnitude, indicating the model does not sufficiently mix the plume into the forest. While the model underestimated the transfer of material downward through the forest, it does suggest that the model's estimates are conservative for making downwind dose estimates because of lower plume depletion, leading to higher concentration and dose estimates. While the field releases do not cover all possible meteorological conditions, we conclude it is appropriate to use a non-zero deposition velocity when performing safety-basis modeling of tritium oxide based on conservatism within the model. A recommendation of 1.0 cm s -1 as a deposition velocity is made, which is beyond the 95 th percentile value estimated from the prior modeling study.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"125-133\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001769\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001769","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:在南卡罗来纳州艾肯附近萨凡纳河遗址的森林环境中,进行了实地试验,以评估氧化氚的沉积速度。实地释放旨在指导沉积速度值的选择,用于基于安全的建模。在2020年和2021年进行了六次氧化氘释放,并在每次释放期间和之后进行了相应的空气采样。对样品进行分析,以确定水中的氘氢比,并在实验过程中转化为空气中的氘浓度。测量结果与先前的模型模拟结果进行了比较,以评估模型性能和沉积速度估计。现场释放表明森林中烟柱的垂直和水平混合。预测沉积速度平均在2.4 ~ 5.4 cm s-1之间。在所有情况下,模型模拟都将氘浓度低估了1到2个数量级,表明模型没有充分地将烟羽混合到森林中。虽然该模型低估了物质向下通过森林的转移,但它确实表明,该模型的估计对于顺风剂量估计是保守的,因为羽流耗损较低,导致浓度和剂量估计较高。虽然现场释放不能涵盖所有可能的气象条件,但我们得出结论,在基于模型内的保守性进行氧化氚安全建模时,使用非零沉积速度是合适的。建议沉积速度为1.0 cm s-1,这超出了先前建模研究估计的第95个百分位数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Deuterium Oxide Deposition Velocity over a Forest Environment.

Abstract: Field experiments were performed to evaluate the deposition velocity of tritium oxide within a forest environment at the Savannah River Site near Aiken, SC. Field releases were designed to guide selection of deposition velocity values for use in safety-basis modeling. Six releases of deuterium oxide were conducted in 2020 and 2021 with corresponding air samples during and following each release. Samples were analyzed to determine the deuterium-to-hydrogen ratio in water and converted to concentrations of deuterium in the air during the experiment. Measurements were compared to prior model simulations to evaluate model performance and deposition velocity estimates. Field releases demonstrated vertical and horizontal mixing of a plume in a forest. Predicted deposition velocities ranged from 2.4 to 5.4 cm s -1 on average. In all cases, model simulations underpredicted deuterium concentration by 1 to 2 orders of magnitude, indicating the model does not sufficiently mix the plume into the forest. While the model underestimated the transfer of material downward through the forest, it does suggest that the model's estimates are conservative for making downwind dose estimates because of lower plume depletion, leading to higher concentration and dose estimates. While the field releases do not cover all possible meteorological conditions, we conclude it is appropriate to use a non-zero deposition velocity when performing safety-basis modeling of tritium oxide based on conservatism within the model. A recommendation of 1.0 cm s -1 as a deposition velocity is made, which is beyond the 95 th percentile value estimated from the prior modeling study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
期刊最新文献
Design of a Low-cost Radiation Weather Station. HEALTH PHYSICS SOCIETY . 2025 AFFILIATE MEMBERS. Policy Surveillance Methods Applied to NORM and TENORM Regulation in the Southeast United States. TENORM Regulation in the United States of America post-West Virginia vs. EPA. The Future of Radiation Protection Professionals: Spotlight on Students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1