{"title":"分子设计的化学语言模型。","authors":"Jürgen Bajorath","doi":"10.1002/minf.202300288","DOIUrl":null,"url":null,"abstract":"<p><p>In drug discovery, chemical language models (CLMs) originating from natural language processing offer new opportunities for molecular design. CLMs have been developed using recurrent neural network (RNN) or transformer architectures. For the predictive performance of RNN-based encoder-decoder frameworks and transformers, attention mechanisms play a central role. Among others, emerging application areas for CLMs include constrained generative modeling and the prediction of chemical reactions or drug-target interactions. Since CLMs are applicable to any compound or target data that can be presented in a sequential format and tokenized, mappings of different types of sequences can be learned. For example, active compounds can be predicted from protein sequence motifs. Novel off-the-beat-path applications can also be considered. For example, analogue series from medicinal chemistry can be perceived and represented as chemical sequences and extended with new compounds using CLMs. Herein, methodological features of CLMs and different applications are discussed.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300288"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical language models for molecular design.\",\"authors\":\"Jürgen Bajorath\",\"doi\":\"10.1002/minf.202300288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In drug discovery, chemical language models (CLMs) originating from natural language processing offer new opportunities for molecular design. CLMs have been developed using recurrent neural network (RNN) or transformer architectures. For the predictive performance of RNN-based encoder-decoder frameworks and transformers, attention mechanisms play a central role. Among others, emerging application areas for CLMs include constrained generative modeling and the prediction of chemical reactions or drug-target interactions. Since CLMs are applicable to any compound or target data that can be presented in a sequential format and tokenized, mappings of different types of sequences can be learned. For example, active compounds can be predicted from protein sequence motifs. Novel off-the-beat-path applications can also be considered. For example, analogue series from medicinal chemistry can be perceived and represented as chemical sequences and extended with new compounds using CLMs. Herein, methodological features of CLMs and different applications are discussed.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300288\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300288\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300288","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
In drug discovery, chemical language models (CLMs) originating from natural language processing offer new opportunities for molecular design. CLMs have been developed using recurrent neural network (RNN) or transformer architectures. For the predictive performance of RNN-based encoder-decoder frameworks and transformers, attention mechanisms play a central role. Among others, emerging application areas for CLMs include constrained generative modeling and the prediction of chemical reactions or drug-target interactions. Since CLMs are applicable to any compound or target data that can be presented in a sequential format and tokenized, mappings of different types of sequences can be learned. For example, active compounds can be predicted from protein sequence motifs. Novel off-the-beat-path applications can also be considered. For example, analogue series from medicinal chemistry can be perceived and represented as chemical sequences and extended with new compounds using CLMs. Herein, methodological features of CLMs and different applications are discussed.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.