RsaM:一个独特的优势调节AHL群体感应细菌。

IF 2.6 4区 生物学 Q3 MICROBIOLOGY Microbiology-Sgm Pub Date : 2023-11-01 DOI:10.1099/mic.0.001417
Vittorio Venturi, Mihael Špacapan, Nemanja Ristović, Cristina Bez
{"title":"RsaM:一个独特的优势调节AHL群体感应细菌。","authors":"Vittorio Venturi, Mihael Špacapan, Nemanja Ristović, Cristina Bez","doi":"10.1099/mic.0.001417","DOIUrl":null,"url":null,"abstract":"<p><p>Quorum sensing (QS) in proteobacteria is a mechanism to control gene expression orchestrated by the LuxI/LuxR protein family pair, which produces and responds to <i>N</i>-acyl homoserine lactone (AHL) diffusible signal molecules. QS is often regarded as a cell density response via the sensing of/response to the concentrations of AHLs, which are constantly basally produced by bacterial cells. The <i>luxI/R</i> systems, however, undergo supra-regulation in response to external stimuli and many regulators have been implicated in controlling QS in bacteria, although it remains unclear how most of these regulators and cues contribute to the QS response. One regulator, called RsaM, has been reported in a few proteobacterial species to have a stringent role in the control of AHL QS. RsaMs are small, in the range of 140-170 aa long, and are found in several genera, principally in <i>Burkholderia</i> and <i>Acinetobacter</i>. The gene encoding RsaM is always located as an independent transcriptional unit, situated adjacent to QS <i>luxI</i> and/or <i>luxR</i> loci. One of the most remarkable aspects of RsaM is its uniqueness; it does not fall into any of the known bacterial regulatory families and it possesses a distinct and novel fold that does not exhibit binding affinity for nucleic acids or AHLs. RsaM stands out as a distinctive regulator in bacteria, as it is likely to have an important ecological role, as well as unravelling a novel way of gene regulation in bacteria.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710839/pdf/","citationCount":"0","resultStr":"{\"title\":\"RsaM: a unique dominant regulator of AHL quorum sensing in bacteria.\",\"authors\":\"Vittorio Venturi, Mihael Špacapan, Nemanja Ristović, Cristina Bez\",\"doi\":\"10.1099/mic.0.001417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quorum sensing (QS) in proteobacteria is a mechanism to control gene expression orchestrated by the LuxI/LuxR protein family pair, which produces and responds to <i>N</i>-acyl homoserine lactone (AHL) diffusible signal molecules. QS is often regarded as a cell density response via the sensing of/response to the concentrations of AHLs, which are constantly basally produced by bacterial cells. The <i>luxI/R</i> systems, however, undergo supra-regulation in response to external stimuli and many regulators have been implicated in controlling QS in bacteria, although it remains unclear how most of these regulators and cues contribute to the QS response. One regulator, called RsaM, has been reported in a few proteobacterial species to have a stringent role in the control of AHL QS. RsaMs are small, in the range of 140-170 aa long, and are found in several genera, principally in <i>Burkholderia</i> and <i>Acinetobacter</i>. The gene encoding RsaM is always located as an independent transcriptional unit, situated adjacent to QS <i>luxI</i> and/or <i>luxR</i> loci. One of the most remarkable aspects of RsaM is its uniqueness; it does not fall into any of the known bacterial regulatory families and it possesses a distinct and novel fold that does not exhibit binding affinity for nucleic acids or AHLs. RsaM stands out as a distinctive regulator in bacteria, as it is likely to have an important ecological role, as well as unravelling a novel way of gene regulation in bacteria.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001417\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001417","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

群体感应(Quorum sensing, QS)是一种由LuxI/LuxR蛋白家族对调控基因表达的机制,其产生并响应n -酰基高丝氨酸内酯(N-acyl homoserine lactone, AHL)扩散信号分子。QS通常被认为是通过对ahl浓度的感知/响应而产生的细胞密度反应,ahl主要是由细菌细胞不断产生的。然而,luxI/R系统在对外界刺激的反应中进行超调节,许多调节因子与控制细菌的QS有关,尽管目前尚不清楚这些调节因子和提示因子如何促进QS反应。一种被称为RsaM的调节因子,据报道在一些蛋白质细菌物种中对AHL QS的控制有严格的作用。rsam很小,长度在140-170 aa之间,存在于几个属中,主要存在于伯克霍尔德氏菌和不动杆菌中。编码RsaM的基因总是被定位为一个独立的转录单元,位于QS luxI和/或luxR位点附近。RsaM最引人注目的方面之一是它的独特性;它不属于任何已知的细菌调节家族,它具有独特而新颖的折叠,不表现出与核酸或ahl的结合亲和力。RsaM在细菌中作为一种独特的调节剂脱颖而出,因为它可能具有重要的生态作用,同时也揭示了细菌基因调控的一种新方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RsaM: a unique dominant regulator of AHL quorum sensing in bacteria.

Quorum sensing (QS) in proteobacteria is a mechanism to control gene expression orchestrated by the LuxI/LuxR protein family pair, which produces and responds to N-acyl homoserine lactone (AHL) diffusible signal molecules. QS is often regarded as a cell density response via the sensing of/response to the concentrations of AHLs, which are constantly basally produced by bacterial cells. The luxI/R systems, however, undergo supra-regulation in response to external stimuli and many regulators have been implicated in controlling QS in bacteria, although it remains unclear how most of these regulators and cues contribute to the QS response. One regulator, called RsaM, has been reported in a few proteobacterial species to have a stringent role in the control of AHL QS. RsaMs are small, in the range of 140-170 aa long, and are found in several genera, principally in Burkholderia and Acinetobacter. The gene encoding RsaM is always located as an independent transcriptional unit, situated adjacent to QS luxI and/or luxR loci. One of the most remarkable aspects of RsaM is its uniqueness; it does not fall into any of the known bacterial regulatory families and it possesses a distinct and novel fold that does not exhibit binding affinity for nucleic acids or AHLs. RsaM stands out as a distinctive regulator in bacteria, as it is likely to have an important ecological role, as well as unravelling a novel way of gene regulation in bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
期刊最新文献
Microbial Primer: Phase variation - survival and adaptability by generation of a diverse population. Mutations in the efflux regulator gene oqxR provide a simple genetic switch for antimicrobial resistance in Klebsiella pneumoniae. Queuosine salvage in Bartonella henselae Houston 1: a unique evolutionary path. A comparative genomic and phenotypic study of Vibrio cholerae model strains using hybrid sequencing. Characterizing a stable five-species microbial community for use in experimental evolution and ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1