直觉模糊变换在多层感知器心脏病预测中的应用研究。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2025-02-01 Epub Date: 2023-11-27 DOI:10.1080/10255842.2023.2284095
Chandan Pan, Tamalika Chaira, Ajoy Kumar Ray
{"title":"直觉模糊变换在多层感知器心脏病预测中的应用研究。","authors":"Chandan Pan, Tamalika Chaira, Ajoy Kumar Ray","doi":"10.1080/10255842.2023.2284095","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease (CVD) is the one of the most fatal diseases in the world we have seen in last two decades. For heart disease detection, imprecision in clinical parameters may occur due to error in taking readings or in measuring devices or environmental conditions etc. Hence, introducing fuzzy set theory in feature engineering may give better results as it deals with uncertainty. But in fuzzy set theory, only one uncertainty is considered, which is membership degree or degree of belongingness. Intuitionistic fuzzy set (IFS) considers two uncertainties - membership degree and non-membership degree and so IFS may provide efficient results. To reduce the risk of heart disease, an advanced deep learning algorithm will play a significant role in heart disease prediction that will help physicians to diagnose early. In this paper, we have established a transformation of patient features using i) intuitionistic fuzzy parameters, where Sugeno-type fuzzy complement is used and ii) fuzzy parameters, where gamma membership function is used. These transformed attributes are applied on Deep Learning prediction algorithm as Multi-layer Perceptron (MLP). The novelty of the paper lies from feature transformation to deep learning. It is observed that intuitionistic fuzzy transformation approach, keeping model parameters intact, significantly outperforms non-fuzzy method and gammy fuzzy Transformation, which is reflected in evaluation mechanisms.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"197-211"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering effect of intuitionistic fuzzy transformation in multi-layer perceptron for heart disease prediction: a study.\",\"authors\":\"Chandan Pan, Tamalika Chaira, Ajoy Kumar Ray\",\"doi\":\"10.1080/10255842.2023.2284095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease (CVD) is the one of the most fatal diseases in the world we have seen in last two decades. For heart disease detection, imprecision in clinical parameters may occur due to error in taking readings or in measuring devices or environmental conditions etc. Hence, introducing fuzzy set theory in feature engineering may give better results as it deals with uncertainty. But in fuzzy set theory, only one uncertainty is considered, which is membership degree or degree of belongingness. Intuitionistic fuzzy set (IFS) considers two uncertainties - membership degree and non-membership degree and so IFS may provide efficient results. To reduce the risk of heart disease, an advanced deep learning algorithm will play a significant role in heart disease prediction that will help physicians to diagnose early. In this paper, we have established a transformation of patient features using i) intuitionistic fuzzy parameters, where Sugeno-type fuzzy complement is used and ii) fuzzy parameters, where gamma membership function is used. These transformed attributes are applied on Deep Learning prediction algorithm as Multi-layer Perceptron (MLP). The novelty of the paper lies from feature transformation to deep learning. It is observed that intuitionistic fuzzy transformation approach, keeping model parameters intact, significantly outperforms non-fuzzy method and gammy fuzzy Transformation, which is reflected in evaluation mechanisms.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"197-211\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2284095\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2284095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病(CVD)是近二十年来世界上最致命的疾病之一。在心脏病检测中,由于读数错误、测量设备或环境条件等原因,可能会出现临床参数不准确的情况。因此,在特征工程中引入模糊集理论可以更好地处理不确定性问题。而在模糊集合理论中,只考虑一种不确定性,即隶属度或隶属度。直觉模糊集(IFS)考虑了两种不确定性——隶属度和非隶属度,因此IFS可以提供有效的结果。为了降低患心脏病的风险,一种先进的深度学习算法将在心脏病预测中发挥重要作用,帮助医生早期诊断。在本文中,我们使用i)直觉模糊参数(其中使用sugeno型模糊补)和ii)模糊参数(其中使用gamma隶属函数)建立了患者特征的转换。这些转换后的属性作为多层感知器(MLP)应用于深度学习预测算法。本文的新颖之处在于从特征变换到深度学习。结果表明,保持模型参数完整的直觉模糊变换方法明显优于非模糊方法和gammy模糊变换方法,这体现在评价机制上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering effect of intuitionistic fuzzy transformation in multi-layer perceptron for heart disease prediction: a study.

Cardiovascular disease (CVD) is the one of the most fatal diseases in the world we have seen in last two decades. For heart disease detection, imprecision in clinical parameters may occur due to error in taking readings or in measuring devices or environmental conditions etc. Hence, introducing fuzzy set theory in feature engineering may give better results as it deals with uncertainty. But in fuzzy set theory, only one uncertainty is considered, which is membership degree or degree of belongingness. Intuitionistic fuzzy set (IFS) considers two uncertainties - membership degree and non-membership degree and so IFS may provide efficient results. To reduce the risk of heart disease, an advanced deep learning algorithm will play a significant role in heart disease prediction that will help physicians to diagnose early. In this paper, we have established a transformation of patient features using i) intuitionistic fuzzy parameters, where Sugeno-type fuzzy complement is used and ii) fuzzy parameters, where gamma membership function is used. These transformed attributes are applied on Deep Learning prediction algorithm as Multi-layer Perceptron (MLP). The novelty of the paper lies from feature transformation to deep learning. It is observed that intuitionistic fuzzy transformation approach, keeping model parameters intact, significantly outperforms non-fuzzy method and gammy fuzzy Transformation, which is reflected in evaluation mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Functionally graded stem optimizes the fixed and sliding surface coupling mechanism. Towards a radiation free numerical modelling framework to predict spring assisted correction of scaphocephaly. A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers. Modeling and simulation credibility assessments of whole-body finite element computational models for use in NASA extravehicular activity applications. A fractional modeling approach for the transmission dynamics of measles with double-dose vaccination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1