{"title":"利用Addgene扩大CRISPR质粒的传播和分布模式。","authors":"Brook Pyhtila, Seth Kasowitz, Rachel Leeson, Rodolphe Barrangou","doi":"10.1089/crispr.2023.0059","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-based technologies have rapidly enabled the democratization of genome editing in academic institutions through distribution by Addgene over the past decade. Recently, several distribution milestones have been reached, with a collection of >15,000 plasmids deposited by >1,000 laboratories spanning ∼40 countries now shipped 300,000 times to ∼5,000 organizations traversing ∼100 countries. Yet, both deposits of and requests for CRISPR plasmids continue to rise for this disruptive technology. Distribution patterns revealed robust demand for three distinct classes of CRISPR effectors, namely nucleases (e.g., Cas9 and Cas12), modulators (deactivated CRISPR nucleases fused to transcriptional regulators and epigenome modifiers), and chimeric effectors (Cas proteins fused to enzymes carrying out other activities such as deamination, reverse transcription, transposition, and integration). Yearly deposits over the past decade are requested in near-even proportions, reflecting continuous technological development and requests for novel constructs. Though it is unclear whether the slowing rate of requests is inherent to a pandemic operational lag or a transition from emerging to mature technology, it is noteworthy that the relative proportion of requests from plasmids deposited in the previous year remains stable, suggesting robust development of novel tools concurrent with continued adoption of editing, base editing, prime editing, and more. Predictably, most requested plasmids are designed for mammalian genome manipulation, presumably for medical research and human health pursuits, reflecting investments in therapeutic applications. Concurrently, requests for plant and microbial constructs are on the rise, especially in regions of the world more reliant on local agricultural inputs and focused on food and feed applications, illustrating continued diversification of genome editing applications.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"493-501"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753985/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Expanding Dissemination and Distribution Patterns of Diverse CRISPR Plasmids by Addgene.\",\"authors\":\"Brook Pyhtila, Seth Kasowitz, Rachel Leeson, Rodolphe Barrangou\",\"doi\":\"10.1089/crispr.2023.0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-based technologies have rapidly enabled the democratization of genome editing in academic institutions through distribution by Addgene over the past decade. Recently, several distribution milestones have been reached, with a collection of >15,000 plasmids deposited by >1,000 laboratories spanning ∼40 countries now shipped 300,000 times to ∼5,000 organizations traversing ∼100 countries. Yet, both deposits of and requests for CRISPR plasmids continue to rise for this disruptive technology. Distribution patterns revealed robust demand for three distinct classes of CRISPR effectors, namely nucleases (e.g., Cas9 and Cas12), modulators (deactivated CRISPR nucleases fused to transcriptional regulators and epigenome modifiers), and chimeric effectors (Cas proteins fused to enzymes carrying out other activities such as deamination, reverse transcription, transposition, and integration). Yearly deposits over the past decade are requested in near-even proportions, reflecting continuous technological development and requests for novel constructs. Though it is unclear whether the slowing rate of requests is inherent to a pandemic operational lag or a transition from emerging to mature technology, it is noteworthy that the relative proportion of requests from plasmids deposited in the previous year remains stable, suggesting robust development of novel tools concurrent with continued adoption of editing, base editing, prime editing, and more. Predictably, most requested plasmids are designed for mammalian genome manipulation, presumably for medical research and human health pursuits, reflecting investments in therapeutic applications. Concurrently, requests for plant and microbial constructs are on the rise, especially in regions of the world more reliant on local agricultural inputs and focused on food and feed applications, illustrating continued diversification of genome editing applications.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\" \",\"pages\":\"493-501\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2023.0059\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2023.0059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The Expanding Dissemination and Distribution Patterns of Diverse CRISPR Plasmids by Addgene.
CRISPR-based technologies have rapidly enabled the democratization of genome editing in academic institutions through distribution by Addgene over the past decade. Recently, several distribution milestones have been reached, with a collection of >15,000 plasmids deposited by >1,000 laboratories spanning ∼40 countries now shipped 300,000 times to ∼5,000 organizations traversing ∼100 countries. Yet, both deposits of and requests for CRISPR plasmids continue to rise for this disruptive technology. Distribution patterns revealed robust demand for three distinct classes of CRISPR effectors, namely nucleases (e.g., Cas9 and Cas12), modulators (deactivated CRISPR nucleases fused to transcriptional regulators and epigenome modifiers), and chimeric effectors (Cas proteins fused to enzymes carrying out other activities such as deamination, reverse transcription, transposition, and integration). Yearly deposits over the past decade are requested in near-even proportions, reflecting continuous technological development and requests for novel constructs. Though it is unclear whether the slowing rate of requests is inherent to a pandemic operational lag or a transition from emerging to mature technology, it is noteworthy that the relative proportion of requests from plasmids deposited in the previous year remains stable, suggesting robust development of novel tools concurrent with continued adoption of editing, base editing, prime editing, and more. Predictably, most requested plasmids are designed for mammalian genome manipulation, presumably for medical research and human health pursuits, reflecting investments in therapeutic applications. Concurrently, requests for plant and microbial constructs are on the rise, especially in regions of the world more reliant on local agricultural inputs and focused on food and feed applications, illustrating continued diversification of genome editing applications.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.