致密流体输运性质的基本振动模型

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physics Reports Pub Date : 2023-11-28 DOI:10.1016/j.physrep.2023.11.004
S.A. Khrapak
{"title":"致密流体输运性质的基本振动模型","authors":"S.A. Khrapak","doi":"10.1016/j.physrep.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>A vibrational model of transport properties of dense fluids assumes that solid-like oscillations of atoms around their temporary equilibrium positions dominate the dynamical picture. The temporary equilibrium positions of atoms do not form any regular structure and are not fixed, unlike in solids. Instead, they are allowed to diffuse and this is why liquids can flow. However, this diffusive motion is characterized by much longer time scales compared to those of solid-like oscillations. Although this general picture is not particularly new, only in a recent series of works it has been possible to construct a coherent and internally consistent <em>quantitative</em><span> description of transport properties such as self-diffusion, shear viscosity, and thermal conductivity. Moreover, the magnitudes of these transport coefficients have been related to the properties of collective excitations in dense fluids. Importantly, the model is simple and no free parameters are involved. Recent achievements are summarized in this overview. Application of the vibrational model to various single-component model systems such as plasma-related Coulomb and screened Coulomb (Yukawa) fluids, the Lennard-Jones fluid, and the hard-sphere fluid is considered in detail. Applications to real liquids are also briefly discussed. Overall, good to excellent agreement with available numerical and experimental data is demonstrated. Conditions of applicability of the vibrational model and a related question concerning the location of the gas–liquid dynamical crossover are discussed.</span></p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1050 ","pages":"Pages 1-29"},"PeriodicalIF":23.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary vibrational model for transport properties of dense fluids\",\"authors\":\"S.A. Khrapak\",\"doi\":\"10.1016/j.physrep.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A vibrational model of transport properties of dense fluids assumes that solid-like oscillations of atoms around their temporary equilibrium positions dominate the dynamical picture. The temporary equilibrium positions of atoms do not form any regular structure and are not fixed, unlike in solids. Instead, they are allowed to diffuse and this is why liquids can flow. However, this diffusive motion is characterized by much longer time scales compared to those of solid-like oscillations. Although this general picture is not particularly new, only in a recent series of works it has been possible to construct a coherent and internally consistent <em>quantitative</em><span> description of transport properties such as self-diffusion, shear viscosity, and thermal conductivity. Moreover, the magnitudes of these transport coefficients have been related to the properties of collective excitations in dense fluids. Importantly, the model is simple and no free parameters are involved. Recent achievements are summarized in this overview. Application of the vibrational model to various single-component model systems such as plasma-related Coulomb and screened Coulomb (Yukawa) fluids, the Lennard-Jones fluid, and the hard-sphere fluid is considered in detail. Applications to real liquids are also briefly discussed. Overall, good to excellent agreement with available numerical and experimental data is demonstrated. Conditions of applicability of the vibrational model and a related question concerning the location of the gas–liquid dynamical crossover are discussed.</span></p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1050 \",\"pages\":\"Pages 1-29\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157323003885\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323003885","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

致密流体输运性质的振动模型假设原子围绕其临时平衡位置的类似固体的振荡主导着动力学图像。与固体不同,原子的临时平衡位置不形成任何规则结构,也不固定。相反,它们被允许扩散,这就是液体可以流动的原因。然而,与类固体振荡相比,这种扩散运动具有更长的时间尺度。虽然这种总体情况并不是特别新,但只有在最近的一系列工作中,才有可能构建一个连贯的和内部一致的输运性质的定量描述,如自扩散、剪切粘度和导热性。此外,这些输运系数的大小与致密流体中集体激励的性质有关。重要的是,该模型简单,不涉及自由参数。本文概述了近年来的研究成果。详细考虑了振动模型在各种单组分模型系统中的应用,如等离子体相关库仑和屏蔽库仑(Yukawa)流体、Lennard-Jones流体和硬球流体。还简要讨论了在实际液体中的应用。总的来说,与现有的数值和实验数据吻合良好。讨论了振动模型的适用条件和气液动力交叉位置的相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elementary vibrational model for transport properties of dense fluids

A vibrational model of transport properties of dense fluids assumes that solid-like oscillations of atoms around their temporary equilibrium positions dominate the dynamical picture. The temporary equilibrium positions of atoms do not form any regular structure and are not fixed, unlike in solids. Instead, they are allowed to diffuse and this is why liquids can flow. However, this diffusive motion is characterized by much longer time scales compared to those of solid-like oscillations. Although this general picture is not particularly new, only in a recent series of works it has been possible to construct a coherent and internally consistent quantitative description of transport properties such as self-diffusion, shear viscosity, and thermal conductivity. Moreover, the magnitudes of these transport coefficients have been related to the properties of collective excitations in dense fluids. Importantly, the model is simple and no free parameters are involved. Recent achievements are summarized in this overview. Application of the vibrational model to various single-component model systems such as plasma-related Coulomb and screened Coulomb (Yukawa) fluids, the Lennard-Jones fluid, and the hard-sphere fluid is considered in detail. Applications to real liquids are also briefly discussed. Overall, good to excellent agreement with available numerical and experimental data is demonstrated. Conditions of applicability of the vibrational model and a related question concerning the location of the gas–liquid dynamical crossover are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
期刊最新文献
Interacting topological quantum aspects with light and geometrical functions Editorial Board Ultrafast demagnetization in ferromagnetic materials: Origins and progress Large fluctuations and primordial black holes Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1