用神经网络方法稳定倒立摆问题的最优控制选择

D. A. Tarkhov, D. A. Lavygin, O. A. Skripkin, M. D. Zakirova, T. V. Lazovskaya
{"title":"用神经网络方法稳定倒立摆问题的最优控制选择","authors":"D. A. Tarkhov,&nbsp;D. A. Lavygin,&nbsp;O. A. Skripkin,&nbsp;M. D. Zakirova,&nbsp;T. V. Lazovskaya","doi":"10.3103/S1060992X23060115","DOIUrl":null,"url":null,"abstract":"<p>The task of managing unstable systems is a critically important management problem, as an unstable object can pose significant danger to humans and the environment when it fails. In this paper, a neural network was trained to determine the optimal control for an unstable system, based on a comparative analysis of two control methods: the implicit Euler method and the linearization method. This neural network identifies the optimal control based on the position of a point on the phase plane.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 2","pages":"S214 - S225"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control Selection for Stabilizing the Inverted Pendulum Problem Using Neural Network Method\",\"authors\":\"D. A. Tarkhov,&nbsp;D. A. Lavygin,&nbsp;O. A. Skripkin,&nbsp;M. D. Zakirova,&nbsp;T. V. Lazovskaya\",\"doi\":\"10.3103/S1060992X23060115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The task of managing unstable systems is a critically important management problem, as an unstable object can pose significant danger to humans and the environment when it fails. In this paper, a neural network was trained to determine the optimal control for an unstable system, based on a comparative analysis of two control methods: the implicit Euler method and the linearization method. This neural network identifies the optimal control based on the position of a point on the phase plane.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"32 2\",\"pages\":\"S214 - S225\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X23060115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23060115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

管理不稳定系统的任务是一个非常重要的管理问题,因为不稳定的对象在发生故障时可能对人类和环境造成重大危险。本文在比较分析隐式欧拉法和线性化法两种控制方法的基础上,训练神经网络来确定不稳定系统的最优控制。该神经网络基于点在相位平面上的位置来识别最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Control Selection for Stabilizing the Inverted Pendulum Problem Using Neural Network Method

The task of managing unstable systems is a critically important management problem, as an unstable object can pose significant danger to humans and the environment when it fails. In this paper, a neural network was trained to determine the optimal control for an unstable system, based on a comparative analysis of two control methods: the implicit Euler method and the linearization method. This neural network identifies the optimal control based on the position of a point on the phase plane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
期刊最新文献
uSF: Learning Neural Semantic Field with Uncertainty Two Frequency-Division Demultiplexing Using Photonic Waveguides by the Presence of Two Geometric Defects Enhancement of Neural Network Performance with the Use of Two Novel Activation Functions: modExp and modExpm Automated Lightweight Descriptor Generation for Hyperspectral Image Analysis Accuracy and Performance Analysis of the 1/t Wang-Landau Algorithm in the Joint Density of States Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1