新兴忆阻器及其在储层计算中的应用

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2023-11-28 DOI:10.1007/s11467-023-1335-x
Hao Chen, Xin-Gui Tang, Zhihao Shen, Wen-Tao Guo, Qi-Jun Sun, Zhenhua Tang, Yan-Ping Jiang
{"title":"新兴忆阻器及其在储层计算中的应用","authors":"Hao Chen,&nbsp;Xin-Gui Tang,&nbsp;Zhihao Shen,&nbsp;Wen-Tao Guo,&nbsp;Qi-Jun Sun,&nbsp;Zhenhua Tang,&nbsp;Yan-Ping Jiang","doi":"10.1007/s11467-023-1335-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, with the emergence of ChatGPT, the field of artificial intelligence has garnered widespread attention from various sectors of society. Reservoir Computing (RC) is a neuromorphic computing algorithm used to analyze time-series data. Unlike traditional artificial neural networks that require the weight values of all nodes in the trained network, RC only needs to train the readout layer. This makes the training process faster and more efficient, and it has been used in various applications, including speech recognition, image classification, and control systems. Its flexibility and efficiency make it a popular choice for processing large amounts of complex data. A recent research trend is to develop physical RC, which utilizes the nonlinear dynamic and short-term memory properties of physical systems (photonic modules, spintronic devices, memristors, etc.) to construct a fixed random neural network structure for processing input data to reduce computing time and energy. In this paper, we introduced the recent development of memristors and demonstrated the remarkable data processing capability of RC systems based on memristors. Not only do they possess excellent data processing ability comparable to digital RC systems, but they also have lower energy consumption and greater robustness. Finally, we discussed the development prospects and challenges faced by memristors-based RC systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging memristors and applications in reservoir computing\",\"authors\":\"Hao Chen,&nbsp;Xin-Gui Tang,&nbsp;Zhihao Shen,&nbsp;Wen-Tao Guo,&nbsp;Qi-Jun Sun,&nbsp;Zhenhua Tang,&nbsp;Yan-Ping Jiang\",\"doi\":\"10.1007/s11467-023-1335-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, with the emergence of ChatGPT, the field of artificial intelligence has garnered widespread attention from various sectors of society. Reservoir Computing (RC) is a neuromorphic computing algorithm used to analyze time-series data. Unlike traditional artificial neural networks that require the weight values of all nodes in the trained network, RC only needs to train the readout layer. This makes the training process faster and more efficient, and it has been used in various applications, including speech recognition, image classification, and control systems. Its flexibility and efficiency make it a popular choice for processing large amounts of complex data. A recent research trend is to develop physical RC, which utilizes the nonlinear dynamic and short-term memory properties of physical systems (photonic modules, spintronic devices, memristors, etc.) to construct a fixed random neural network structure for processing input data to reduce computing time and energy. In this paper, we introduced the recent development of memristors and demonstrated the remarkable data processing capability of RC systems based on memristors. Not only do they possess excellent data processing ability comparable to digital RC systems, but they also have lower energy consumption and greater robustness. Finally, we discussed the development prospects and challenges faced by memristors-based RC systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1335-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1335-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着ChatGPT的出现,人工智能领域受到了社会各界的广泛关注。储层计算(RC)是一种用于分析时间序列数据的神经形态计算算法。与传统人工神经网络需要训练网络中所有节点的权值不同,RC只需要训练读出层。这使得训练过程更快、更有效,并已用于各种应用,包括语音识别、图像分类和控制系统。它的灵活性和效率使其成为处理大量复杂数据的热门选择。最近的一个研究趋势是发展物理RC,它利用物理系统(光子模块、自旋电子器件、忆阻器等)的非线性动态和短时记忆特性,构建固定的随机神经网络结构来处理输入数据,以减少计算时间和能量。本文介绍了忆阻器的最新发展,并展示了基于忆阻器的RC系统的出色的数据处理能力。它们不仅具有与数字RC系统相媲美的出色数据处理能力,而且具有更低的能耗和更强的鲁棒性。最后,讨论了基于忆阻器的RC系统的发展前景和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emerging memristors and applications in reservoir computing

Recently, with the emergence of ChatGPT, the field of artificial intelligence has garnered widespread attention from various sectors of society. Reservoir Computing (RC) is a neuromorphic computing algorithm used to analyze time-series data. Unlike traditional artificial neural networks that require the weight values of all nodes in the trained network, RC only needs to train the readout layer. This makes the training process faster and more efficient, and it has been used in various applications, including speech recognition, image classification, and control systems. Its flexibility and efficiency make it a popular choice for processing large amounts of complex data. A recent research trend is to develop physical RC, which utilizes the nonlinear dynamic and short-term memory properties of physical systems (photonic modules, spintronic devices, memristors, etc.) to construct a fixed random neural network structure for processing input data to reduce computing time and energy. In this paper, we introduced the recent development of memristors and demonstrated the remarkable data processing capability of RC systems based on memristors. Not only do they possess excellent data processing ability comparable to digital RC systems, but they also have lower energy consumption and greater robustness. Finally, we discussed the development prospects and challenges faced by memristors-based RC systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1