基于GastroPlus™软件的阿托伐他汀片生物等效性的计算机预测

IF 2.8 3区 医学 Q2 PHARMACOLOGY & PHARMACY BMC Pharmacology & Toxicology Pub Date : 2023-11-28 DOI:10.1186/s40360-023-00689-4
Lu Wang, Jinliang Chen, Wenjun Chen, Zourong Ruan, Honggang Lou, Dandan Yang, Bo Jiang
{"title":"基于GastroPlus™软件的阿托伐他汀片生物等效性的计算机预测","authors":"Lu Wang, Jinliang Chen, Wenjun Chen, Zourong Ruan, Honggang Lou, Dandan Yang, Bo Jiang","doi":"10.1186/s40360-023-00689-4","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of intestinal absorption of various drugs based on computer simulations has been a reality. However, in vivo pharmacokinetic simulations and virtual bioequivalence evaluation based on GastroPlus™ have not been found. This study aimed to simulate plasma concentrations with different dissolution profiles and run population simulations to evaluate the bioequivalence of test and reference products of atorvastation using GastroPlus software. The dissolution profiles of the reference and test products of atorvastatin (20 mg tablets), and clinical plasma concentration-time data of the reference product were used for the simulations. The results showed that the simulated models were successfully established for atorvastatin tablets. Population simulation results indicated that the test formulation was bioequivalent to the reference formulation. The findings suggest that modelling is an essential tool to demonstrating the possibility of pharmacokinetic and bioequivalence for atorvastatin. It will contribute to understanding the potential risks during the development of generic products.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"24 1","pages":"69"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685666/pdf/","citationCount":"0","resultStr":"{\"title\":\"In silico prediction of bioequivalence of atorvastatin tablets based on GastroPlus™ software.\",\"authors\":\"Lu Wang, Jinliang Chen, Wenjun Chen, Zourong Ruan, Honggang Lou, Dandan Yang, Bo Jiang\",\"doi\":\"10.1186/s40360-023-00689-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prediction of intestinal absorption of various drugs based on computer simulations has been a reality. However, in vivo pharmacokinetic simulations and virtual bioequivalence evaluation based on GastroPlus™ have not been found. This study aimed to simulate plasma concentrations with different dissolution profiles and run population simulations to evaluate the bioequivalence of test and reference products of atorvastation using GastroPlus software. The dissolution profiles of the reference and test products of atorvastatin (20 mg tablets), and clinical plasma concentration-time data of the reference product were used for the simulations. The results showed that the simulated models were successfully established for atorvastatin tablets. Population simulation results indicated that the test formulation was bioequivalent to the reference formulation. The findings suggest that modelling is an essential tool to demonstrating the possibility of pharmacokinetic and bioequivalence for atorvastatin. It will contribute to understanding the potential risks during the development of generic products.</p>\",\"PeriodicalId\":9023,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":\"24 1\",\"pages\":\"69\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-023-00689-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-023-00689-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

基于计算机模拟的各种药物的肠道吸收预测已经成为现实。然而,基于GastroPlus™的体内药代动力学模拟和虚拟生物等效性评估尚未发现。本研究旨在模拟不同溶出度的血浆浓度,并使用GastroPlus软件进行人群模拟,以评估阿托伐他汀的试验产品和参比产品的生物等效性。采用阿托伐他汀(20mg片剂)对照品和试验品的溶出度曲线,以及对照品的临床血药浓度-时间数据进行模拟。结果表明,所建立的阿托伐他汀片的模拟模型是成功的。种群模拟结果表明,试验制剂与参比制剂具有生物等效性。研究结果表明,建模是证明阿托伐他汀的药代动力学和生物等效性的可能性的重要工具。这将有助于了解仿制药开发过程中的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico prediction of bioequivalence of atorvastatin tablets based on GastroPlus™ software.

The prediction of intestinal absorption of various drugs based on computer simulations has been a reality. However, in vivo pharmacokinetic simulations and virtual bioequivalence evaluation based on GastroPlus™ have not been found. This study aimed to simulate plasma concentrations with different dissolution profiles and run population simulations to evaluate the bioequivalence of test and reference products of atorvastation using GastroPlus software. The dissolution profiles of the reference and test products of atorvastatin (20 mg tablets), and clinical plasma concentration-time data of the reference product were used for the simulations. The results showed that the simulated models were successfully established for atorvastatin tablets. Population simulation results indicated that the test formulation was bioequivalent to the reference formulation. The findings suggest that modelling is an essential tool to demonstrating the possibility of pharmacokinetic and bioequivalence for atorvastatin. It will contribute to understanding the potential risks during the development of generic products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Pharmacology & Toxicology
BMC Pharmacology & Toxicology PHARMACOLOGY & PHARMACYTOXICOLOGY&nb-TOXICOLOGY
CiteScore
4.80
自引率
0.00%
发文量
87
审稿时长
12 weeks
期刊介绍: BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.
期刊最新文献
Pulrodemstat, a selective inhibitor of KDM1A, suppresses head and neck squamous cell carcinoma growth by triggering apoptosis. Resveratrol inhibits ferroptosis in the lung tissues of heat stroke-induced rats via the Nrf2 pathway. An in vivo and in silico probing of the protective potential of betaine against sodium fluoride-induced neurotoxicity. Cinnamaldehyde ameliorates diabetes-induced biochemical impairments and AGEs macromolecules in a pre-clinical model of diabetic nephropathy. Real-world research on beta-blocker usage trends in China and safety exploration based on the FDA Adverse Event Reporting System (FAERS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1