Peter Grouleff Jensen, Tonci Balic-Zunic, Ulla Gro Nielsen, Philip Miguel Kofoed
{"title":"体系中的固溶体为NaMgAl(SO4)3 - kmgal (SO4)3","authors":"Peter Grouleff Jensen, Tonci Balic-Zunic, Ulla Gro Nielsen, Philip Miguel Kofoed","doi":"10.1007/s00269-023-01259-0","DOIUrl":null,"url":null,"abstract":"<div><p>We synthesized six samples in the compositional field NaMgAl(SO<sub>4</sub>)<sub>3</sub>–KMgAl(SO<sub>4</sub>)<sub>3</sub> in 20 mol% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, <sup>23</sup>Na, and <sup>27</sup>Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO<sub>4</sub>)<sub>3</sub> as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na<sub>0.65</sub>K<sub>0.35</sub>MgAl(SO<sub>4</sub>)<sub>3</sub> from where a solid solution extends to KMgAl(SO<sub>4</sub>)<sub>3</sub>. The mineral koryakite [NaKMg<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO<sub>4</sub>)<sub>3</sub> phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO<sub>4</sub>)<sub>3</sub> has <span>\\(R\\overline{3}c\\)</span> symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have <span>\\(R\\overline{3}\\)</span> symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO<sub>4</sub> tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na<sup>+</sup> or K<sup>+</sup> ions.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01259-0.pdf","citationCount":"0","resultStr":"{\"title\":\"The solid solution in the system NaMgAl(SO4)3–KMgAl(SO4)3\",\"authors\":\"Peter Grouleff Jensen, Tonci Balic-Zunic, Ulla Gro Nielsen, Philip Miguel Kofoed\",\"doi\":\"10.1007/s00269-023-01259-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We synthesized six samples in the compositional field NaMgAl(SO<sub>4</sub>)<sub>3</sub>–KMgAl(SO<sub>4</sub>)<sub>3</sub> in 20 mol% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, <sup>23</sup>Na, and <sup>27</sup>Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO<sub>4</sub>)<sub>3</sub> as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na<sub>0.65</sub>K<sub>0.35</sub>MgAl(SO<sub>4</sub>)<sub>3</sub> from where a solid solution extends to KMgAl(SO<sub>4</sub>)<sub>3</sub>. The mineral koryakite [NaKMg<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO<sub>4</sub>)<sub>3</sub> phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO<sub>4</sub>)<sub>3</sub> has <span>\\\\(R\\\\overline{3}c\\\\)</span> symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have <span>\\\\(R\\\\overline{3}\\\\)</span> symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO<sub>4</sub> tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na<sup>+</sup> or K<sup>+</sup> ions.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"50 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-023-01259-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-023-01259-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01259-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在20 mol / l的合成范围内合成了NaMgAl(SO4)3 - kmgal (SO4)3% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, 23Na, and 27Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO4)3 as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na0.65K0.35MgAl(SO4)3 from where a solid solution extends to KMgAl(SO4)3. The mineral koryakite [NaKMg2Al2(SO4)6] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO4)3 phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO4)3 has \(R\overline{3}c\) symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have \(R\overline{3}\) symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO4 tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na+ or K+ ions.
The solid solution in the system NaMgAl(SO4)3–KMgAl(SO4)3
We synthesized six samples in the compositional field NaMgAl(SO4)3–KMgAl(SO4)3 in 20 mol% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, 23Na, and 27Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO4)3 as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na0.65K0.35MgAl(SO4)3 from where a solid solution extends to KMgAl(SO4)3. The mineral koryakite [NaKMg2Al2(SO4)6] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO4)3 phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO4)3 has \(R\overline{3}c\) symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have \(R\overline{3}\) symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO4 tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na+ or K+ ions.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)