{"title":"胸腺基质淋巴生成素抑制活化小胶质细胞中神经炎症标志物和JAK2/STAT5通路。","authors":"Qiao Zhou, Nanxue Cui, Shihai Zhang, Miaomiao Zhou, Younian Xu","doi":"10.1684/ecn.2023.0487","DOIUrl":null,"url":null,"abstract":"<p><p>Thymic stromal lymphopoietin (TSLP) is highly expressed in the central nervous system in response to inflammation, but its exact function remains unclear. In this study, we used a model of LPS-stimulated microglia to investigate the direct impact of TSLP on microglial activation and the underlying mechanism. We measured oxidative stress, expression of microglial activation markers, and inflammatory indexes. The results show that TSLP treatment increased the expression of TSLP receptors and reduced LPS-induced oxidative stress, inflammation, and the expression of M1-type markers in microglia. Interestingly, TSLP treatment also influenced the differentiation of microglia towards the M2 type, suppressing LPS-induced activation, mediated by the JAK2/STAT5 pathway. Moreover, TSLP also promoted the expression of macrophage markers in the absence of LPS. These findings support the hypothesis that TSLP plays a role in reducing neuroinflammation by blocking the JAK2/STAT5 pathway induced by LPS, thus indicating a regulatory role in the central nervous system. Targeting this cytokine might provide a novel strategy for controlling an inflammatory response in the central nervous system.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"34 3","pages":"21-27"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thymic stromal lymphopoietin suppresses markers of neuroinflammation and the JAK2/STAT5 pathway in activated microglia.\",\"authors\":\"Qiao Zhou, Nanxue Cui, Shihai Zhang, Miaomiao Zhou, Younian Xu\",\"doi\":\"10.1684/ecn.2023.0487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thymic stromal lymphopoietin (TSLP) is highly expressed in the central nervous system in response to inflammation, but its exact function remains unclear. In this study, we used a model of LPS-stimulated microglia to investigate the direct impact of TSLP on microglial activation and the underlying mechanism. We measured oxidative stress, expression of microglial activation markers, and inflammatory indexes. The results show that TSLP treatment increased the expression of TSLP receptors and reduced LPS-induced oxidative stress, inflammation, and the expression of M1-type markers in microglia. Interestingly, TSLP treatment also influenced the differentiation of microglia towards the M2 type, suppressing LPS-induced activation, mediated by the JAK2/STAT5 pathway. Moreover, TSLP also promoted the expression of macrophage markers in the absence of LPS. These findings support the hypothesis that TSLP plays a role in reducing neuroinflammation by blocking the JAK2/STAT5 pathway induced by LPS, thus indicating a regulatory role in the central nervous system. Targeting this cytokine might provide a novel strategy for controlling an inflammatory response in the central nervous system.</p>\",\"PeriodicalId\":11749,\"journal\":{\"name\":\"European cytokine network\",\"volume\":\"34 3\",\"pages\":\"21-27\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cytokine network\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/ecn.2023.0487\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cytokine network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/ecn.2023.0487","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thymic stromal lymphopoietin suppresses markers of neuroinflammation and the JAK2/STAT5 pathway in activated microglia.
Thymic stromal lymphopoietin (TSLP) is highly expressed in the central nervous system in response to inflammation, but its exact function remains unclear. In this study, we used a model of LPS-stimulated microglia to investigate the direct impact of TSLP on microglial activation and the underlying mechanism. We measured oxidative stress, expression of microglial activation markers, and inflammatory indexes. The results show that TSLP treatment increased the expression of TSLP receptors and reduced LPS-induced oxidative stress, inflammation, and the expression of M1-type markers in microglia. Interestingly, TSLP treatment also influenced the differentiation of microglia towards the M2 type, suppressing LPS-induced activation, mediated by the JAK2/STAT5 pathway. Moreover, TSLP also promoted the expression of macrophage markers in the absence of LPS. These findings support the hypothesis that TSLP plays a role in reducing neuroinflammation by blocking the JAK2/STAT5 pathway induced by LPS, thus indicating a regulatory role in the central nervous system. Targeting this cytokine might provide a novel strategy for controlling an inflammatory response in the central nervous system.
期刊介绍:
The journal that brings together all areas of work involving cytokines.
European Cytokine Network is an electronic journal that publishes original articles and abstracts every quarter to provide an essential bridge between researchers and clinicians with an interest in this cutting-edge field.
The journal has become a must-read for specialists in the field thanks to its swift publication and international circulation.
The journal is referenced in several databases, including Medline, which is testament to its scientific quality.