Fingolimod (FTY720)是一种fda批准的鞘氨醇1-磷酸(S1P)受体激动剂,在细胞和动物模型中恢复登革热病毒血清2型感染的内皮高通透性。

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY IUBMB Life Pub Date : 2023-11-30 DOI:10.1002/iub.2795
Ayan Modak, Srishti Rajkumar Mishra, Mansi Awasthi, Arya Aravind, Sneha Singh, Easwaran Sreekumar
{"title":"Fingolimod (FTY720)是一种fda批准的鞘氨醇1-磷酸(S1P)受体激动剂,在细胞和动物模型中恢复登革热病毒血清2型感染的内皮高通透性。","authors":"Ayan Modak,&nbsp;Srishti Rajkumar Mishra,&nbsp;Mansi Awasthi,&nbsp;Arya Aravind,&nbsp;Sneha Singh,&nbsp;Easwaran Sreekumar","doi":"10.1002/iub.2795","DOIUrl":null,"url":null,"abstract":"<p>Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both <i>in vitro</i> systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fingolimod (FTY720), an FDA-approved sphingosine 1-phosphate (S1P) receptor agonist, restores endothelial hyperpermeability in cellular and animal models of dengue virus serotype 2 infection\",\"authors\":\"Ayan Modak,&nbsp;Srishti Rajkumar Mishra,&nbsp;Mansi Awasthi,&nbsp;Arya Aravind,&nbsp;Sneha Singh,&nbsp;Easwaran Sreekumar\",\"doi\":\"10.1002/iub.2795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both <i>in vitro</i> systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.</p>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iub.2795\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.2795","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

广泛的血管渗漏和休克是登革热相关死亡的主要原因。目前,还没有具体的治疗方法。鞘脂通路在内皮屏障完整性中起关键作用;并通过5个鞘氨醇-1-磷酸受体(S1PR1-S1PR5)介导。通过S1PR2信号传导促进屏障破坏;在登革热病毒(DENV)感染中,这种受体过表达。Fingolimod (FTY720)是一种特异性激动剂,靶向剩余的屏障保护性S1P受体,而不靶向S1PR2。在本研究中,我们探讨了FTY720治疗是否可以减轻denv诱导的内皮细胞高通透性。在体外系统和AG129动物模型的功能分析中,发现FTY720治疗有效。经治疗后,感染DENV血清型2的人微血管内皮细胞(HMEC-1)的单层完整性完全恢复。在分子水平上,治疗逆转了S1P通路的激活。显著降低PTEN、RhoA、VE-Cadherin等关键分子的磷酸化;以及S1PR2的表达水平。在用FTY720治疗denv2感染的AG129小鼠中,体重增加、总体临床症状和生存率均有显著改善。感染denv2、未经治疗的动物在感染后第10天100%死亡,而fty720治疗的动物有70%存活;在感染后15天观察期结束时,仍有30%的患者存活。经fty720处理的DENV-2感染动物器官中的埃文蓝染料渗透性显著降低;血象也有改善,血小板减少症和肝功能完全恢复。我们的研究结果表明,fda批准的分子Fingolimod (FTY720)是一种有希望的重症登革热治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fingolimod (FTY720), an FDA-approved sphingosine 1-phosphate (S1P) receptor agonist, restores endothelial hyperpermeability in cellular and animal models of dengue virus serotype 2 infection

Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IUBMB Life
IUBMB Life 生物-生化与分子生物学
CiteScore
10.60
自引率
0.00%
发文量
109
审稿时长
4-8 weeks
期刊介绍: IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.
期刊最新文献
Aminoacyl-tRNA synthetase defects in neurological diseases. Correction to "Astrakurkurone, a Sesquiterpenoid From Wild Edible Mushroom, Targets Liver Cancer Cells by Modulating Bcl-2 Family Proteins". Coexisting bacterial aminoacyl-tRNA synthetase paralogs exhibit distinct phylogenetic backgrounds and functional compatibility with Escherichia coli. Genetic variations in NER pathway gene polymorphisms and Wilms tumor risk: A six-center case-control study in East China. Cover Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1