{"title":"神经退行性变中的欠作用离子通道。","authors":"Matisse T Jacobs, Rebecca San Gil, Adam K Walker","doi":"10.1016/j.tins.2023.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent study, Guo and colleagues characterised the function of an elusive endoplasmic reticulum (ER) anion channel protein, Chloride Channel CLiC Like 1 (CLCC1), and identified rare CLCC1 variants in people with amyotrophic lateral sclerosis (ALS). CLCC1 mutants disrupted ER function in vitro and promoted ALS-like pathology and neurodegeneration in mice. This work reveals a previously uncharacterised pathway involved in ER calcium release and highlights new pathogenic mechanisms underlying neurodegeneration.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UndERACting ion channels in neurodegeneration.\",\"authors\":\"Matisse T Jacobs, Rebecca San Gil, Adam K Walker\",\"doi\":\"10.1016/j.tins.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent study, Guo and colleagues characterised the function of an elusive endoplasmic reticulum (ER) anion channel protein, Chloride Channel CLiC Like 1 (CLCC1), and identified rare CLCC1 variants in people with amyotrophic lateral sclerosis (ALS). CLCC1 mutants disrupted ER function in vitro and promoted ALS-like pathology and neurodegeneration in mice. This work reveals a previously uncharacterised pathway involved in ER calcium release and highlights new pathogenic mechanisms underlying neurodegeneration.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2023.11.002\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2023.11.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
In a recent study, Guo and colleagues characterised the function of an elusive endoplasmic reticulum (ER) anion channel protein, Chloride Channel CLiC Like 1 (CLCC1), and identified rare CLCC1 variants in people with amyotrophic lateral sclerosis (ALS). CLCC1 mutants disrupted ER function in vitro and promoted ALS-like pathology and neurodegeneration in mice. This work reveals a previously uncharacterised pathway involved in ER calcium release and highlights new pathogenic mechanisms underlying neurodegeneration.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.