Mark R. Shavers , Edward J. Semones , Vyacheslav Shurshakov , Mikhail Dobynde , Tatsuhiko Sato , Tatsuto Komiyama , Leena Tomi , Jing Chen , Samy El-Jaby , Ulrich Straube , Chunsheng Li , Werner Rühm
{"title":"国际空间站伙伴机构对30天月球任务的剂量和风险评估比较。","authors":"Mark R. Shavers , Edward J. Semones , Vyacheslav Shurshakov , Mikhail Dobynde , Tatsuhiko Sato , Tatsuto Komiyama , Leena Tomi , Jing Chen , Samy El-Jaby , Ulrich Straube , Chunsheng Li , Werner Rühm","doi":"10.1016/j.zemedi.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A “shielded” ubiquitous galactic cosmic radiation (GCR) environment combined with––and separate from––the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body’s self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 1","pages":"Pages 31-43"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923001216/pdfft?md5=31f7430d986940c92142e5bd471f10e0&pid=1-s2.0-S0939388923001216-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of dose and risk estimates between ISS Partner Agencies for a 30-day lunar mission\",\"authors\":\"Mark R. Shavers , Edward J. Semones , Vyacheslav Shurshakov , Mikhail Dobynde , Tatsuhiko Sato , Tatsuto Komiyama , Leena Tomi , Jing Chen , Samy El-Jaby , Ulrich Straube , Chunsheng Li , Werner Rühm\",\"doi\":\"10.1016/j.zemedi.2023.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A “shielded” ubiquitous galactic cosmic radiation (GCR) environment combined with––and separate from––the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body’s self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 1\",\"pages\":\"Pages 31-43\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388923001216/pdfft?md5=31f7430d986940c92142e5bd471f10e0&pid=1-s2.0-S0939388923001216-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923001216\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923001216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Comparison of dose and risk estimates between ISS Partner Agencies for a 30-day lunar mission
The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A “shielded” ubiquitous galactic cosmic radiation (GCR) environment combined with––and separate from––the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body’s self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.