{"title":"运动强度对年轻男性循环FGF-21、FSTL-1、组织蛋白酶B和BDNF的急性影响","authors":"Minje Ji , Chaeeun Cho , Sewon Lee","doi":"10.1016/j.jesf.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/objectives</h3><p>Exercise intensity is potentially an important regulator of various exerkines secretion, but the optimal exercise intensity to increase and sustain exerkines levels, including FGF-21, FSTL-1, cathepsin B, and BDNF in humans, has not yet been fully elucidated. This study aimed to examine the circulating levels of FGF-21, FSTL-1, cathepsin B, and BDNF according to the exercise intensity.</p></div><div><h3>Methods</h3><p>Nine young men (24.0 ± 0.4 years old) performed 4 different experimental sessions at 1-week intervals: 1) a control session (CTRL; no exercise); 2) moderate-intensity continuous exercise (MICE, 55% HRR); 3) vigorous-intensity continuous exercise (VICE, 85% HRR); and 4) high-intensity interval exercise (HIIE, 4 repetitions of a 30-s of “all out” cycling workout followed by a 4-min recovery). Blood samples were collected at 4 different time points (pre-exercise, immediately post-exercise, 30 min post-exercise, and 90 min post-exercise).</p></div><div><h3>Results</h3><p>Serum FGF-21, FSTL-1, cathepsin B, and BDNF were higher in HIIE than in CTRL immediately post-exercise, and FSTL-1, cathepsin B, and BDNF were higher in HIIE than in MICE immediately post-exercise (<em>P</em> < 0.05). The AUC for FGF-21, FSTL-1, and BDNF was higher in HIIE than in CTRL, and the AUC for FGF-21 and BDNF was higher in HIIE than in MICE (<em>P</em> < 0.05). Furthermore, the change in blood lactate was positively correlated with the changes in all exerkines.</p></div><div><h3>Conclusions</h3><p>This study demonstrates that acute HIIE effectively increases serum FGF-21, FSTL-1, cathepsin B, and BDNF compared to MICE. Therefore, the secretion of exerkines, including FGF-21, FSTL-1, cathepsin B, and BDNF may be exercise intensity-dependent.</p></div>","PeriodicalId":15793,"journal":{"name":"Journal of Exercise Science & Fitness","volume":"22 1","pages":"Pages 51-58"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1728869X2300062X/pdfft?md5=cd558978c7b4c0768b06124b8522657b&pid=1-s2.0-S1728869X2300062X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Acute effect of exercise intensity on circulating FGF-21, FSTL-1, cathepsin B, and BDNF in young men\",\"authors\":\"Minje Ji , Chaeeun Cho , Sewon Lee\",\"doi\":\"10.1016/j.jesf.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background/objectives</h3><p>Exercise intensity is potentially an important regulator of various exerkines secretion, but the optimal exercise intensity to increase and sustain exerkines levels, including FGF-21, FSTL-1, cathepsin B, and BDNF in humans, has not yet been fully elucidated. This study aimed to examine the circulating levels of FGF-21, FSTL-1, cathepsin B, and BDNF according to the exercise intensity.</p></div><div><h3>Methods</h3><p>Nine young men (24.0 ± 0.4 years old) performed 4 different experimental sessions at 1-week intervals: 1) a control session (CTRL; no exercise); 2) moderate-intensity continuous exercise (MICE, 55% HRR); 3) vigorous-intensity continuous exercise (VICE, 85% HRR); and 4) high-intensity interval exercise (HIIE, 4 repetitions of a 30-s of “all out” cycling workout followed by a 4-min recovery). Blood samples were collected at 4 different time points (pre-exercise, immediately post-exercise, 30 min post-exercise, and 90 min post-exercise).</p></div><div><h3>Results</h3><p>Serum FGF-21, FSTL-1, cathepsin B, and BDNF were higher in HIIE than in CTRL immediately post-exercise, and FSTL-1, cathepsin B, and BDNF were higher in HIIE than in MICE immediately post-exercise (<em>P</em> < 0.05). The AUC for FGF-21, FSTL-1, and BDNF was higher in HIIE than in CTRL, and the AUC for FGF-21 and BDNF was higher in HIIE than in MICE (<em>P</em> < 0.05). Furthermore, the change in blood lactate was positively correlated with the changes in all exerkines.</p></div><div><h3>Conclusions</h3><p>This study demonstrates that acute HIIE effectively increases serum FGF-21, FSTL-1, cathepsin B, and BDNF compared to MICE. Therefore, the secretion of exerkines, including FGF-21, FSTL-1, cathepsin B, and BDNF may be exercise intensity-dependent.</p></div>\",\"PeriodicalId\":15793,\"journal\":{\"name\":\"Journal of Exercise Science & Fitness\",\"volume\":\"22 1\",\"pages\":\"Pages 51-58\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1728869X2300062X/pdfft?md5=cd558978c7b4c0768b06124b8522657b&pid=1-s2.0-S1728869X2300062X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Exercise Science & Fitness\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1728869X2300062X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Exercise Science & Fitness","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1728869X2300062X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Acute effect of exercise intensity on circulating FGF-21, FSTL-1, cathepsin B, and BDNF in young men
Background/objectives
Exercise intensity is potentially an important regulator of various exerkines secretion, but the optimal exercise intensity to increase and sustain exerkines levels, including FGF-21, FSTL-1, cathepsin B, and BDNF in humans, has not yet been fully elucidated. This study aimed to examine the circulating levels of FGF-21, FSTL-1, cathepsin B, and BDNF according to the exercise intensity.
Methods
Nine young men (24.0 ± 0.4 years old) performed 4 different experimental sessions at 1-week intervals: 1) a control session (CTRL; no exercise); 2) moderate-intensity continuous exercise (MICE, 55% HRR); 3) vigorous-intensity continuous exercise (VICE, 85% HRR); and 4) high-intensity interval exercise (HIIE, 4 repetitions of a 30-s of “all out” cycling workout followed by a 4-min recovery). Blood samples were collected at 4 different time points (pre-exercise, immediately post-exercise, 30 min post-exercise, and 90 min post-exercise).
Results
Serum FGF-21, FSTL-1, cathepsin B, and BDNF were higher in HIIE than in CTRL immediately post-exercise, and FSTL-1, cathepsin B, and BDNF were higher in HIIE than in MICE immediately post-exercise (P < 0.05). The AUC for FGF-21, FSTL-1, and BDNF was higher in HIIE than in CTRL, and the AUC for FGF-21 and BDNF was higher in HIIE than in MICE (P < 0.05). Furthermore, the change in blood lactate was positively correlated with the changes in all exerkines.
Conclusions
This study demonstrates that acute HIIE effectively increases serum FGF-21, FSTL-1, cathepsin B, and BDNF compared to MICE. Therefore, the secretion of exerkines, including FGF-21, FSTL-1, cathepsin B, and BDNF may be exercise intensity-dependent.
期刊介绍:
The Journal of Exercise Science and Fitness is the official peer-reviewed journal of The Society of Chinese Scholars on Exercise Physiology and Fitness (SCSEPF), the Physical Fitness Association of Hong Kong, China (HKPFA), and the Hong Kong Association of Sports Medicine and Sports Science (HKASMSS). It is published twice a year, in June and December, by Elsevier.
The Journal accepts original investigations, comprehensive reviews, case studies and short communications on current topics in exercise science, physical fitness and physical education.