{"title":"管理医疗保健中的人工智能应用:促进利益相关者之间的信息处理","authors":"Peter Hofmann , Luis Lämmermann , Nils Urbach","doi":"10.1016/j.ijinfomgt.2023.102728","DOIUrl":null,"url":null,"abstract":"<div><p>AI applications hold great potential for improving healthcare. However, successfully operating AI is a complex endeavor requiring organizations to establish adequate management approaches. Managing AI applications requires functioning information exchange between a diverse set of stakeholders. Lacking information processing among stakeholders increases task uncertainty, hampering the operation of AI applications. Existing research lacks an understanding of holistic AI management approaches. To shed light on AI management in healthcare, we conducted a multi-perspective literature analysis followed by an interview study. Based on the organizational information processing theory, this paper investigates AI management in healthcare from an organizational perspective. As a result, we develop the AI application management model (AIAMA) that illustrates the managerial factors of AI management in healthcare and its interrelations. Furthermore, we provide managerial practices that improve information processing among stakeholders. We contribute to the academic discourse by providing a conceptual framework that increases the theoretical understanding of AI's management factors and understanding of management interrelations. Moreover, we contribute to practice by providing management practices that promote information processing and decrease task uncertainty when managing AI applications in healthcare.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":null,"pages":null},"PeriodicalIF":20.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268401223001093/pdfft?md5=9c69fd125eda50ebb09d78088b5741d1&pid=1-s2.0-S0268401223001093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Managing artificial intelligence applications in healthcare: Promoting information processing among stakeholders\",\"authors\":\"Peter Hofmann , Luis Lämmermann , Nils Urbach\",\"doi\":\"10.1016/j.ijinfomgt.2023.102728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>AI applications hold great potential for improving healthcare. However, successfully operating AI is a complex endeavor requiring organizations to establish adequate management approaches. Managing AI applications requires functioning information exchange between a diverse set of stakeholders. Lacking information processing among stakeholders increases task uncertainty, hampering the operation of AI applications. Existing research lacks an understanding of holistic AI management approaches. To shed light on AI management in healthcare, we conducted a multi-perspective literature analysis followed by an interview study. Based on the organizational information processing theory, this paper investigates AI management in healthcare from an organizational perspective. As a result, we develop the AI application management model (AIAMA) that illustrates the managerial factors of AI management in healthcare and its interrelations. Furthermore, we provide managerial practices that improve information processing among stakeholders. We contribute to the academic discourse by providing a conceptual framework that increases the theoretical understanding of AI's management factors and understanding of management interrelations. Moreover, we contribute to practice by providing management practices that promote information processing and decrease task uncertainty when managing AI applications in healthcare.</p></div>\",\"PeriodicalId\":48422,\"journal\":{\"name\":\"International Journal of Information Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0268401223001093/pdfft?md5=9c69fd125eda50ebb09d78088b5741d1&pid=1-s2.0-S0268401223001093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268401223001093\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401223001093","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Managing artificial intelligence applications in healthcare: Promoting information processing among stakeholders
AI applications hold great potential for improving healthcare. However, successfully operating AI is a complex endeavor requiring organizations to establish adequate management approaches. Managing AI applications requires functioning information exchange between a diverse set of stakeholders. Lacking information processing among stakeholders increases task uncertainty, hampering the operation of AI applications. Existing research lacks an understanding of holistic AI management approaches. To shed light on AI management in healthcare, we conducted a multi-perspective literature analysis followed by an interview study. Based on the organizational information processing theory, this paper investigates AI management in healthcare from an organizational perspective. As a result, we develop the AI application management model (AIAMA) that illustrates the managerial factors of AI management in healthcare and its interrelations. Furthermore, we provide managerial practices that improve information processing among stakeholders. We contribute to the academic discourse by providing a conceptual framework that increases the theoretical understanding of AI's management factors and understanding of management interrelations. Moreover, we contribute to practice by providing management practices that promote information processing and decrease task uncertainty when managing AI applications in healthcare.
期刊介绍:
The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include:
Comprehensive Coverage:
IJIM keeps readers informed with major papers, reports, and reviews.
Topical Relevance:
The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues.
Focus on Quality:
IJIM prioritizes high-quality papers that address contemporary issues in information management.