{"title":"利用几何形态计量学研究器官生长过程中的基因功能:通过甲虫角形状异速学研究的见解。","authors":"Patrick T. Rohner, Yonggang Hu, Armin P. Moczek","doi":"10.1111/ede.12464","DOIUrl":null,"url":null,"abstract":"<p>Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the <i>size</i> of dung beetle horns also recapitulate the effect of horn <i>shape</i> allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., <i>doublesex, Foxo</i>) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., <i>Distal-less</i>, <i>dachs</i>) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12464","citationCount":"0","resultStr":"{\"title\":\"Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry\",\"authors\":\"Patrick T. Rohner, Yonggang Hu, Armin P. Moczek\",\"doi\":\"10.1111/ede.12464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the <i>size</i> of dung beetle horns also recapitulate the effect of horn <i>shape</i> allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., <i>doublesex, Foxo</i>) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., <i>Distal-less</i>, <i>dachs</i>) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.</p>\",\"PeriodicalId\":12083,\"journal\":{\"name\":\"Evolution & Development\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12464\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12464\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12464","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry
Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the size of dung beetle horns also recapitulate the effect of horn shape allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., Distal-less, dachs) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.
期刊介绍:
Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.