Paulo Newton Tonolli , Orlando Chiarelli-Neto , Maurício S. Baptista
{"title":"皮肤细胞中可见光引发的DNA损伤:寻求全面的防晒","authors":"Paulo Newton Tonolli , Orlando Chiarelli-Neto , Maurício S. Baptista","doi":"10.1016/j.jpap.2023.100217","DOIUrl":null,"url":null,"abstract":"<div><p>Skin cells present many endogenous photosensitizers (ePS) that interact with light, generating oxidizing species, causing molecular damage in proteins, lipids, and nucleic acids, and consequently triggering cellular and organelle malfunction. Several cell lines with terminal differentiation are susceptible to accumulating non-digestible pigments, such as lipofuscin or melanin-lipofuscin. Besides being hallmarks of aging, both pigments can work as photosensitizers, increasing and expanding the toxicity of sunlight to the range of visible light (VL, 400–700 nm). In here we review the literature to describe the mechanisms by which the photosensitized oxidation reactions induced by VL cause DNA damage. We aim to provide the mechanistic background needed to improve the current strategies of photoprotection.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"18 ","pages":"Article 100217"},"PeriodicalIF":3.2610,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666469023000581/pdfft?md5=1e55efd127a6fe0916787d8c796651fc&pid=1-s2.0-S2666469023000581-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DNA lesions triggered by visible light in skin cells: In the search for comprehensive sun protection\",\"authors\":\"Paulo Newton Tonolli , Orlando Chiarelli-Neto , Maurício S. Baptista\",\"doi\":\"10.1016/j.jpap.2023.100217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Skin cells present many endogenous photosensitizers (ePS) that interact with light, generating oxidizing species, causing molecular damage in proteins, lipids, and nucleic acids, and consequently triggering cellular and organelle malfunction. Several cell lines with terminal differentiation are susceptible to accumulating non-digestible pigments, such as lipofuscin or melanin-lipofuscin. Besides being hallmarks of aging, both pigments can work as photosensitizers, increasing and expanding the toxicity of sunlight to the range of visible light (VL, 400–700 nm). In here we review the literature to describe the mechanisms by which the photosensitized oxidation reactions induced by VL cause DNA damage. We aim to provide the mechanistic background needed to improve the current strategies of photoprotection.</p></div>\",\"PeriodicalId\":375,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology\",\"volume\":\"18 \",\"pages\":\"Article 100217\"},\"PeriodicalIF\":3.2610,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666469023000581/pdfft?md5=1e55efd127a6fe0916787d8c796651fc&pid=1-s2.0-S2666469023000581-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666469023000581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNA lesions triggered by visible light in skin cells: In the search for comprehensive sun protection
Skin cells present many endogenous photosensitizers (ePS) that interact with light, generating oxidizing species, causing molecular damage in proteins, lipids, and nucleic acids, and consequently triggering cellular and organelle malfunction. Several cell lines with terminal differentiation are susceptible to accumulating non-digestible pigments, such as lipofuscin or melanin-lipofuscin. Besides being hallmarks of aging, both pigments can work as photosensitizers, increasing and expanding the toxicity of sunlight to the range of visible light (VL, 400–700 nm). In here we review the literature to describe the mechanisms by which the photosensitized oxidation reactions induced by VL cause DNA damage. We aim to provide the mechanistic background needed to improve the current strategies of photoprotection.