Fraz Saeed Butt , Nurul A. Mazlan , Allana Lewis , Norbert Radacsi , Xianfeng Fan , Shuiqing Yang , Yi Huang
{"title":"沸石咪唑酸框架-8纳米片组件用于高效小分子吸附","authors":"Fraz Saeed Butt , Nurul A. Mazlan , Allana Lewis , Norbert Radacsi , Xianfeng Fan , Shuiqing Yang , Yi Huang","doi":"10.1016/j.ceja.2023.100573","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) have gained tremendous attention based on the prospect of application-oriented structural tuning. In this study, the surfactant (SDS)-directed hydrothermal synthesis route was adopted for a one-pot, bottom-up synthesis of ZIF-8 spherical assemblies, stacked with externally oriented and intergrown two-dimensional (2D) nanosheets. The as-obtained nanosheet assemblies exhibited good crystallinity, a large surface area, and excellent thermal stability, as shown by XRD, BET, and TGA, respectively. More importantly, the ZIF-8 nanosheet assemblies displayed excellent small molecule adsorption characteristics, especially for the negatively charged dyes, including rose bengal (RB), uni-blue A (UA), and methyl orange (MO). Furthermore, samples showed a pseudo-second-order adsorption mechanism for dye molecules and presented a good fit for Langmuir's and Temkin's adsorption isotherms with an <em>R</em><sup>2</sup> value of 0.98 and 0.94, respectively. Adsorbent–adsorbate electrostatic interaction, nanosheet structures, molecular size and structural aromaticity of the dye, and the presence of SDS functionalities were found as the essential components for the high-capacity dye adsorption as compared with previous studies.</p></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666821123001308/pdfft?md5=af3cb9e373289f249860f170e9e9df09&pid=1-s2.0-S2666821123001308-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Zeolitic imidazolate framework-8 nanosheet assemblies for high-efficiency small molecule adsorption\",\"authors\":\"Fraz Saeed Butt , Nurul A. Mazlan , Allana Lewis , Norbert Radacsi , Xianfeng Fan , Shuiqing Yang , Yi Huang\",\"doi\":\"10.1016/j.ceja.2023.100573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-organic frameworks (MOFs) have gained tremendous attention based on the prospect of application-oriented structural tuning. In this study, the surfactant (SDS)-directed hydrothermal synthesis route was adopted for a one-pot, bottom-up synthesis of ZIF-8 spherical assemblies, stacked with externally oriented and intergrown two-dimensional (2D) nanosheets. The as-obtained nanosheet assemblies exhibited good crystallinity, a large surface area, and excellent thermal stability, as shown by XRD, BET, and TGA, respectively. More importantly, the ZIF-8 nanosheet assemblies displayed excellent small molecule adsorption characteristics, especially for the negatively charged dyes, including rose bengal (RB), uni-blue A (UA), and methyl orange (MO). Furthermore, samples showed a pseudo-second-order adsorption mechanism for dye molecules and presented a good fit for Langmuir's and Temkin's adsorption isotherms with an <em>R</em><sup>2</sup> value of 0.98 and 0.94, respectively. Adsorbent–adsorbate electrostatic interaction, nanosheet structures, molecular size and structural aromaticity of the dye, and the presence of SDS functionalities were found as the essential components for the high-capacity dye adsorption as compared with previous studies.</p></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666821123001308/pdfft?md5=af3cb9e373289f249860f170e9e9df09&pid=1-s2.0-S2666821123001308-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821123001308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821123001308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Zeolitic imidazolate framework-8 nanosheet assemblies for high-efficiency small molecule adsorption
Metal-organic frameworks (MOFs) have gained tremendous attention based on the prospect of application-oriented structural tuning. In this study, the surfactant (SDS)-directed hydrothermal synthesis route was adopted for a one-pot, bottom-up synthesis of ZIF-8 spherical assemblies, stacked with externally oriented and intergrown two-dimensional (2D) nanosheets. The as-obtained nanosheet assemblies exhibited good crystallinity, a large surface area, and excellent thermal stability, as shown by XRD, BET, and TGA, respectively. More importantly, the ZIF-8 nanosheet assemblies displayed excellent small molecule adsorption characteristics, especially for the negatively charged dyes, including rose bengal (RB), uni-blue A (UA), and methyl orange (MO). Furthermore, samples showed a pseudo-second-order adsorption mechanism for dye molecules and presented a good fit for Langmuir's and Temkin's adsorption isotherms with an R2 value of 0.98 and 0.94, respectively. Adsorbent–adsorbate electrostatic interaction, nanosheet structures, molecular size and structural aromaticity of the dye, and the presence of SDS functionalities were found as the essential components for the high-capacity dye adsorption as compared with previous studies.